Consequences of a XENONnT/LZ signal for the LHC and thermal dark matter production

in collaboration with S. Baum, R. Catena, J. Conrad, K. Freese [arXiv:1709.06051, 1712.07969]

Martin B. Krauss

DESY Theory Workshop 2018

September 26th, 2018 Hamburg

Overview

- After potential DM discovery, what can we learn about DM properties?
- XENONnT will start 2019
- LHC Run 3 planned start in 2020, 300 fb⁻¹ in 2022
- Assuming O(100) XENONnT events in 2021 (~20 ton×year exposure) (just below current limits)
- Non-relativistic EFT and simplified DM models as framework

→ What predictions can be made for LHC Run 3 monojet (and dijet) searches? → Is a discovery compatible with thermal production?

 \rightarrow Using complementarity in DM searches, what can we learn about DM properties? (mass, couplings, spin,...)

$$\begin{split} & \hat{\mathcal{O}}_1 = \mathbf{1}_{\chi} \mathbf{1}_N \\ & \hat{\mathcal{O}}_3 = i \hat{S}_N \cdot \left(\frac{\hat{q}}{m_N} \times \hat{v}^{\perp}\right) \mathbf{1}_{\chi} \\ & \hat{\mathcal{O}}_4 = \hat{S}_{\chi} \cdot \hat{S}_N \\ & \hat{\mathcal{O}}_5 = i \hat{S}_{\chi} \cdot \left(\frac{\hat{q}}{m_N} \times \hat{v}^{\perp}\right) \mathbf{1}_N \\ & \hat{\mathcal{O}}_6 = \left(\hat{S}_{\chi} \cdot \frac{\hat{q}}{m_N}\right) \left(\hat{S}_N \cdot \frac{\hat{q}}{m_N}\right) \\ & \hat{\mathcal{O}}_7 = \hat{S}_N \cdot \hat{v}^{\perp} \mathbf{1}_{\chi} \\ & \hat{\mathcal{O}}_8 = \hat{S}_{\chi} \cdot \hat{v}^{\perp} \mathbf{1}_N \\ & \hat{\mathcal{O}}_9 = i \hat{S}_{\chi} \cdot \left(\hat{S}_N \times \frac{\hat{q}}{m_N}\right) \\ & \hat{\mathcal{O}}_{11} = i \hat{S}_{\chi} \cdot \frac{\hat{q}}{m_N} \mathbf{1}_{\chi} \\ & \hat{\mathcal{O}}_{11} = i \hat{S}_{\chi} \cdot \left(\hat{S}_N \times \hat{v}^{\perp}\right) \\ & \hat{\mathcal{O}}_{13} = i \left(\hat{S}_{\chi} \cdot \hat{v}^{\perp}\right) \left(\hat{S}_N \cdot \hat{\theta}^{\perp}\right) \\ & \hat{\mathcal{O}}_{14} = i \left(\hat{S}_{\chi} \cdot \frac{\hat{q}}{m_N}\right) \left(\hat{S}_N \cdot \hat{v}^{\perp}\right) \\ & \hat{\mathcal{O}}_{15} = - \left(\hat{S}_{\chi} \cdot \frac{\hat{q}}{m_N}\right) \left[\left(\hat{S}_N \times \hat{v}^{\perp}\right) \cdot \frac{\hat{q}}{m_N} \\ & \hat{\mathcal{O}}_{17} = i \frac{\hat{q}}{m_N} \cdot \hat{\mathbf{S}} \cdot \hat{\mathbf{S}}_N \\ \end{array}$$

[Fitzpatrick et al., 2012]

$$\begin{split} & \hat{\mathcal{O}}_1 = \mathbf{1}_{\chi} \mathbf{1}_N \\ & \hat{\mathcal{O}}_3 = i \hat{S}_N \cdot \left(\frac{\hat{q}}{m_N} \times \hat{\mathbf{0}}^{\perp}\right) \mathbf{1}_{\chi} \\ & \hat{\mathcal{O}}_4 = \hat{S}_{\chi} \cdot \hat{S}_N \\ & \hat{\mathcal{O}}_5 = i \hat{S}_{\chi} \cdot \left(\frac{\hat{m}}{m_N} \times \hat{\mathbf{0}}^{\perp}\right) \mathbf{1}_N \\ & \hat{\mathcal{O}}_6 = \left(\hat{S}_{\chi} \cdot \frac{\hat{q}}{m_N}\right) \left(\hat{S}_N \cdot \frac{\hat{q}}{m_N}\right) \\ & \hat{\mathcal{O}}_7 = \hat{S}_N \cdot \hat{\mathbf{0}}^{\perp} \mathbf{1}_{\chi} \\ & \hat{\mathcal{O}}_8 = \hat{S}_{\chi} \cdot \hat{\mathbf{0}}^{\perp} \mathbf{1}_{\chi} \\ & \hat{\mathcal{O}}_9 = i \hat{S}_{\chi} \cdot \left(\hat{S}_N \times \frac{\hat{q}}{m_N}\right) \\ & \hat{\mathcal{O}}_{11} = i \hat{S}_{\chi} \cdot \frac{\hat{q}}{m_N} \mathbf{1}_N \\ & \hat{\mathcal{O}}_{12} = \hat{S}_{\chi} \cdot \left(\hat{S}_N \times \hat{\mathbf{0}}^{\perp}\right) \\ & \hat{\mathcal{O}}_{13} = i \left(\hat{S}_{\chi} \cdot \hat{\mathbf{0}}^{\perp}\right) \left(\hat{S}_N \cdot \hat{\mathbf{0}}^{\perp}\right) \\ & \hat{\mathcal{O}}_{14} = i \left(\hat{S}_{\chi} \cdot \frac{\hat{q}}{m_N}\right) \left(\hat{S}_N \cdot \hat{\mathbf{0}}^{\perp}\right) \\ & \hat{\mathcal{O}}_{15} = - \left(\hat{S}_{\chi} \cdot \frac{\hat{q}}{m_N}\right) \left[\left(\hat{S}_N \times \hat{\mathbf{0}}^{\perp}\right) \cdot \frac{\hat{q}}{m_N} \\ & \hat{\mathcal{O}}_{17} = i \frac{\hat{q}}{m_N} \cdot \hat{\mathbf{S}} \cdot \hat{\mathbf{S}}_N \\ \end{split}$$

[Fitzpatrick et al., 2012]

$$\begin{split} \dot{z}_{\chi G q} &= \mathrm{i}\bar{\chi} \, \bar{\mathcal{D}} \chi - m_{\chi} \bar{\chi} \chi - \frac{-}{4} \mathcal{G}'_{\mu\nu} \mathcal{G}^{\mu\nu} + \frac{-}{2} m_G^2 G_{\mu} G^{\mu} \\ &- \frac{\lambda_G}{4} (G_{\mu} G^{\mu})^2 + \mathrm{i}\bar{q} \mathcal{D} q - m_q \bar{q} q \\ &- \frac{\lambda_3}{2} \bar{\chi} \gamma^{\mu} \chi G_{\mu} - \lambda_4 \bar{\chi} \gamma^{\mu} \gamma^5 \chi G_{\mu} \\ &- h_3 (\bar{q} \gamma_{\mu} q) G^{\mu} - h_4 (\bar{q} \gamma_{\mu} \gamma^5 q) G^{\mu} \, . \end{split}$$

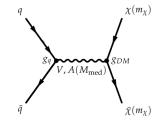
2 / 15

$$\begin{split} \hat{\mathcal{O}}_1 &= \mathbf{1}_{\chi} \mathbf{1}_N \\ \hat{\mathcal{O}}_3 &= i \hat{S}_N \cdot \left(\frac{\hat{q}}{m_N} \times \hat{\mathbf{s}}^{\perp}\right) \mathbf{1}_{\chi} \\ \hat{\mathcal{O}}_4 &= \hat{S}_{\chi} \cdot \hat{S}_N \\ \hat{\mathcal{O}}_5 &= i \hat{S}_{\chi} \cdot \left(\frac{\hat{m}}{m_N} \times \hat{\mathbf{s}}^{\perp}\right) \mathbf{1}_N \\ \hat{\mathcal{O}}_6 &= \left(\hat{S}_{\chi} \cdot \frac{\hat{q}}{m_N}\right) \left(\hat{S}_N \cdot \frac{\hat{q}}{m_N}\right) \\ \hat{\mathcal{O}}_7 &= \hat{S}_N \cdot \hat{\mathbf{s}}^{\perp} \mathbf{1}_{\chi} \\ \hat{\mathcal{O}}_8 &= \hat{S}_{\chi} \cdot \hat{\mathbf{s}}^{\perp} \mathbf{1}_N \\ \hat{\mathcal{O}}_9 &= i \hat{S}_{\chi} \cdot \left(\hat{S}_N \times \frac{\hat{q}}{m_N}\right) \\ \hat{\mathcal{O}}_{10} &= i \hat{S}_N \cdot \frac{\hat{q}}{m_N} \mathbf{1}_N \\ \hat{\mathcal{O}}_{11} &= i \hat{S}_{\chi} \cdot \left(\hat{S}_N \times \hat{\mathbf{s}}^{\perp}\right) \\ \hat{\mathcal{O}}_{13} &= i \left(\hat{S}_{\chi} \cdot \hat{\mathbf{s}}^{\perp}\right) \left(\hat{S}_N \cdot \hat{\mathbf{s}}^{\perp}\right) \\ \hat{\mathcal{O}}_{14} &= i \left(\hat{S}_{\chi} \cdot \frac{\hat{q}}{m_N}\right) \left(\hat{S}_N \cdot \hat{\mathbf{s}}^{\perp}\right) \\ \hat{\mathcal{O}}_{15} &= - \left(\hat{S}_{\chi} \cdot \frac{\hat{q}}{m_N}\right) \left[\left(\hat{S}_N \times \hat{\mathbf{s}}^{\perp}\right) \cdot \frac{\hat{q}}{m_N} \\ \hat{\mathcal{O}}_{17} &= i \frac{\hat{q}}{m_N} \cdot \hat{\mathbf{s}} \cdot \hat{\mathbf{s}}^{\perp} \mathbf{1}_N \\ \hat{\mathcal{O}}_{18} &= i \frac{\hat{q}}{m_N} \cdot \hat{\mathbf{s}} \cdot \hat{S}_N \end{split}$$

[Fitzpatrick et al., 2012]

$$\begin{split} \mathcal{L}_{\chi G q} &= \mathrm{i} \bar{\chi} \mathcal{D} \chi - m_{\chi} \bar{\chi} \chi - \frac{-}{4} \mathcal{G}'_{\mu \nu} \mathcal{G}^{\mu \nu} + \frac{-}{2} m_{G}^{2} \mathcal{G}_{\mu} \mathcal{G}^{\mu} \\ &- \frac{\lambda_{G}}{4} (\mathcal{G}_{\mu} \mathcal{G}^{\mu})^{2} + \mathrm{i} \bar{q} \mathcal{D} q - m_{q} \bar{q} q \\ &- \frac{\lambda_{3}}{2} \bar{\chi} \gamma^{\mu} \chi \mathcal{G}_{\mu} - \lambda_{4} \bar{\chi} \gamma^{\mu} \gamma^{5} \chi \mathcal{G}_{\mu} \\ &- h_{3} (\bar{q} \gamma_{\mu} q) \mathcal{G}^{\mu} - h_{4} (\bar{q} \gamma_{\mu} \gamma^{5} q) \mathcal{G}^{\mu} \,. \end{split}$$

[Dent et al., 2015]



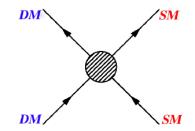
 \downarrow

$$\begin{split} \hat{\mathcal{O}}_1 &= \mathbf{1}_{\chi} \mathbf{1}_N \\ \hat{\mathcal{O}}_3 &= i \hat{S}_N \cdot \left(\frac{\hat{q}}{m_N} \times \hat{v}^{\perp}\right) \mathbf{1}_{\chi} \\ \hat{\mathcal{O}}_4 &= \hat{S}_{\chi} \cdot \hat{S}_N \\ \hat{\mathcal{O}}_5 &= i \hat{S}_{\chi} \cdot \left(\frac{\hat{q}}{m_N} \times \hat{v}^{\perp}\right) \mathbf{1}_N \\ \hat{\mathcal{O}}_6 &= \left(\hat{S}_{\chi} \cdot \frac{\hat{q}}{m_N}\right) \left(\hat{S}_N \cdot \frac{\hat{q}}{m_N}\right) \\ \hat{\mathcal{O}}_7 &= \hat{S}_N \cdot \hat{v}^{\perp} \mathbf{1}_{\chi} \\ \hat{\mathcal{O}}_8 &= \hat{S}_{\chi} \cdot \hat{v}^{\perp} \mathbf{1}_N \\ \hat{\mathcal{O}}_9 &= i \hat{S}_{\chi} \cdot \left(\hat{S}_N \times \frac{\hat{q}}{m_N}\right) \\ \hat{\mathcal{O}}_{10} &= i \hat{S}_{\chi} \cdot \frac{\hat{q}}{m_N} \mathbf{1}_{\chi} \\ \hat{\mathcal{O}}_{11} &= i \hat{S}_{\chi} \cdot \frac{\hat{q}}{m_N} \mathbf{1}_N \\ \hat{\mathcal{O}}_{12} &= \hat{S}_{\chi} \cdot \left(\hat{S}_N \times \hat{v}^{\perp}\right) \\ \hat{\mathcal{O}}_{13} &= i \left(\hat{S}_{\chi} \cdot \hat{v}^{\perp}\right) \left(\hat{S}_N \cdot \frac{\hat{q}}{m_N}\right) \\ \hat{\mathcal{O}}_{14} &= i \left(S_{\chi} \cdot \frac{\hat{q}}{m_N}\right) \left(\hat{S}_N \cdot \hat{v}^{\perp}\right) \\ \hat{\mathcal{O}}_{15} &= - \left(\hat{S}_{\chi} \cdot \frac{\hat{q}}{m_N}\right) \left[\left(\hat{S}_N \times \hat{v}^{\perp}\right) \cdot \frac{\hat{q}}{m_N}\right] \\ \hat{\mathcal{O}}_{17} &= i \frac{\hat{q}}{m_N} \cdot \hat{S} \cdot \hat{S}_N \end{split}$$

 \rightarrow

[Fitzpatrick et al., 2012]

$$\begin{split} \mathcal{L}_{\chi G q} &= \mathrm{i} \bar{\chi} \mathcal{B} \chi - m_{\chi} \bar{\chi} \chi - \frac{-G}{4} \mathcal{G}_{\mu\nu} \mathcal{G}^{\mu\nu} + \frac{-m_G^2 G_{\mu} G^{\mu}}{2} \\ &- \frac{\lambda_G}{4} (G_{\mu} G^{\mu})^2 + \mathrm{i} \bar{q} \mathcal{D} q - m_q \bar{q} q \\ &- \frac{\lambda_3}{2} \bar{\chi} \gamma^{\mu} \chi G_{\mu} - \lambda_4 \bar{\chi} \gamma^{\mu} \gamma^5 \chi G_{\mu} \\ &- h_3 (\bar{q} \gamma_{\mu} q) G^{\mu} - h_4 (\bar{q} \gamma_{\mu} \gamma^5 q) G^{\mu} \,. \end{split}$$



$$\begin{array}{l} \hat{\mathcal{O}}_{1} = \mathbf{1}_{\chi}\mathbf{1}_{N} \\ \hat{\mathcal{O}}_{3} = i\hat{S}_{N} \cdot \left(\frac{\hat{q}}{m_{N}} \times \hat{v}^{\perp}\right) \mathbf{1}_{\chi} \\ \hat{\mathcal{O}}_{4} = \hat{s}_{\chi} \cdot \hat{S}_{N} \\ \hat{\mathcal{O}}_{5} = i\hat{S}_{\chi} \cdot \left(\frac{\hat{q}}{m_{N}} \times \hat{v}^{\perp}\right) \mathbf{1}_{N} \\ \hat{\mathcal{O}}_{6} = \left(\hat{S}_{\chi} \cdot \frac{\hat{q}}{m_{N}}\right) \left(\hat{S}_{N} \cdot \frac{\hat{q}}{m_{N}}\right) \\ \hat{\mathcal{O}}_{7} = \hat{S}_{N} \cdot \hat{v}^{\perp} \mathbf{1}_{\chi} \\ \hat{\mathcal{O}}_{8} = \hat{S}_{\chi} \cdot \hat{v}^{\perp} \mathbf{1}_{N} \\ \hat{\mathcal{O}}_{9} = i\hat{S}_{\chi} \cdot \left(\hat{S}_{N} \times \frac{\hat{q}}{m_{N}}\right) \\ \hat{\mathcal{O}}_{10} = i\hat{S}_{N} \cdot \frac{\hat{q}}{m_{N}} \mathbf{1}_{\chi} \\ \hat{\mathcal{O}}_{11} = i\hat{S}_{\chi} \cdot \frac{\hat{q}}{m_{N}} \mathbf{1}_{N} \\ \hat{\mathcal{O}}_{12} = \hat{S}_{\chi} \cdot \left(\hat{S}_{N} \times \hat{v}^{\perp}\right) \\ \hat{\mathcal{O}}_{13} = i \left(\hat{S}_{\chi} \cdot \hat{\frac{q}}{m_{N}}\right) \left(\hat{S}_{N} \cdot \hat{\frac{q}}{m_{N}}\right) \\ \hat{\mathcal{O}}_{14} = i \left(\hat{S}_{\chi} \cdot \frac{\hat{q}}{m_{N}}\right) \left(\hat{S}_{N} \times \hat{v}^{\perp}\right) \\ \hat{\mathcal{O}}_{15} = - \left(\hat{S}_{\chi} \cdot \frac{\hat{q}}{m_{N}}\right) \left[\left(\hat{S}_{N} \times \hat{v}^{\perp}\right) \cdot \frac{\hat{q}}{m_{N}}\right] \\ \hat{\mathcal{O}}_{17} = i \frac{\hat{q}}{m_{N}} \cdot \hat{s} \cdot \hat{s}_{N} \end{array}$$

 \rightarrow

[Fitzpatrick et al., 2012]

$$\begin{split} \mathcal{L}_{\chi G q} &= \mathrm{i} \bar{\chi} D \hspace{-0.5mm} \bar{\chi} - m_{\chi} \bar{\chi} \chi - \frac{-\mathcal{G}'_{\mu\nu} \mathcal{G}^{\mu\nu} + \frac{-}{2} m_{G}^{2} G_{\mu} G^{\mu} \\ &- \frac{\lambda_{G}}{4} (G_{\mu} G^{\mu})^{2} + \mathrm{i} \bar{q} D \hspace{-0.5mm} \bar{q} - m_{q} \bar{q} q \\ &- \frac{\lambda_{3}}{2} \bar{\chi} \gamma^{\mu} \chi G_{\mu} - \lambda_{4} \bar{\chi} \gamma^{\mu} \gamma^{5} \chi G_{\mu} \\ &- h_{3} (\bar{q} \gamma_{\mu} q) G^{\mu} - h_{4} (\bar{q} \gamma_{\mu} \gamma^{5} q) G^{\mu} \, . \end{split}$$

 \downarrow

[Dent et al., 2015]

spin 1/2 DM Coeff. Scalar med. Vector med. $\begin{array}{l}-\frac{h_3^N\lambda_3}{M_G^2}\\4\frac{h_4^N\lambda_4}{M_G^2}\end{array}$ $\frac{h_1^N \lambda_1}{M_{\Phi}^2}$ c_1 c_4 $\frac{h_2^N \lambda_2}{M_{\star}^2} \frac{m_N}{m_{\chi}}$ c_6 $\begin{array}{c} 2\frac{h_4^N\lambda_3}{M_G^2} \\ -2\frac{h_3^N\lambda_4}{M_G^2} \end{array}$ C_7 c_8 $-2\frac{h_4^N \lambda_3}{M_C^2} \frac{m_N}{m_{\chi}} - 2\frac{h_3^N \lambda_4}{M_C^2}$ c_9 $-\frac{\frac{h_2^N \lambda_1}{M_{\Phi}^2}}{\frac{h_1^N \lambda_2}{M_{\Phi}^2}} \frac{m_N}{m_{\chi}}$ c_{10} c_{11}

2 / 15

Benchmark points from direct detection

Direct detection can only constrain

$$M_{\rm eff} \equiv 0.1 \frac{M_{\rm med}}{\sqrt{g_q g_{\rm DM}}}$$

Assume XENONnT(/LZ) detects O(100) (S1) signal events with an exposure of $\varepsilon = 20$ ton \times year

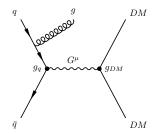
 \rightarrow Calculate $M_{\rm eff}$ for various combinations of couplings and mediators.

Operators with larger supression $\downarrow \\ \text{smaller } M_{\text{eff}}$

_				
Benchmar	'k po	ints		
Spin 0 DM	Op.	g_q	^g DM	$M_{\rm eff}$ [GeV]
	1	h_1	91	14564.484
	1	h_3	94	10260.217
	7	h_4	<i>g</i> ₄	4.509
	10	h_2	<i>g</i> ₁	10.706
Spin 1/2 DM	Op.	g_q	^g DM	$M_{\rm eff}$ [GeV]
	1	h_1	λ_1	14564.484
	1	h_3	λ_3	7255.068
	4	h_4	λ_4	147.354
	6	h_2	λ_2	0.286
	7	h_4	λ_3	3.188
	8	h_3	λ_4	225.159
	10	h_2	λ_1	10.706
	11	h_1	λ_2	351.589
Spin 1/2 DM	Op.	g_q	^g DM	$M_{\rm eff}$ [GeV]
	1	h_1	b1	14564.484
	1	h_3	b_5	10260.216
	4	h_4	$\Re(b_7)$	188.302
	4	h_4	$\Im(b_7)$	3.215
	5	h_3	3(b6)	6.946
	7	h_4	b_5	4.509
	8	h_3	$\Re(b_7)$	287.728
	9	h_4	3(b6)	3.674
	10	h_2	b_1	10.706
	11	h_3	$\Im(b_7)$	223.794

Impact on LHC monojet searches

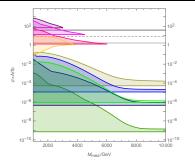
- Translating the $\mathcal{O}(100)$ XENONnT events into regions in the $M_{\rm med}$ - σ plane
- Mediator necessarily couples to quarks. → Can be produced in pp collisions
- Can decay into pair of DM particles (E_{miss}^T)
- Initial state radiation (e.g., gluon) → jet in detector



Current Limits and projections

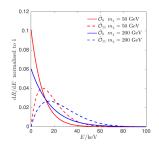
For 12.9 fb^{-1} integrated luminosity \rightarrow monojet limit $\sigma \times \mathcal{A} \approx 40 \text{ fb}$ (Event level with selection cuts). For projections after Run 3 we consider scaling with L and \sqrt{L} .

Monojet predictions



spin 0 DM Limits and projections $\hat{\mathcal{O}}_1(h_1, g_1)$ current limit $\hat{\mathcal{O}}_1(h_3, g_4)$ projected sensitivity $300 \text{ fb}^{-1} (\sqrt{L})$ spin $\frac{1}{2}$ DM projected sensitivity $\hat{\mathcal{O}}_1(h_1,\lambda_1)$ $300 \text{ fb}^{-1}(L)$ $\hat{\mathcal{O}}_1(h_3,\lambda_3)$ $\hat{\mathcal{O}}_4(h_4,\lambda_4)$ $\hat{\mathcal{O}}_8(h_3,\lambda_4)$ $\hat{\mathcal{O}}_{11}(h_1,\lambda_2)$ spin 1 DM $\hat{O}_1(h_1, b_1)$ $\hat{O}_1(h_3, b_5)$

Combining spectral information from direct detection with the discovery or lack of discovery of a monojet signal at the LHC can provide important information about the nature of the DM and mediator.



DM thermal production

DM in the early Universe in thermal equilibrium

 $\mathsf{DM} + \mathsf{DM} \leftrightarrows \mathsf{SM} + \mathsf{SM}$.

Boltzmann equation

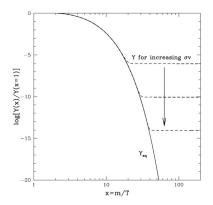
$$\dot{n} + 3Hn = -\langle \sigma v_{\mathsf{Møl}} \rangle (n^2 - n_{\mathsf{eq}}^2)$$

with the thermally averaged annihilation cross-section

$$\langle \sigma v_{\mathrm{M} \wp \mathrm{l}}
angle = \int_{0}^{\infty} \mathrm{d}\epsilon \,\, \mathcal{K}(x,\epsilon) \, \sigma v_{\mathrm{lab}}$$

and

$$x = \frac{m}{T}$$
.

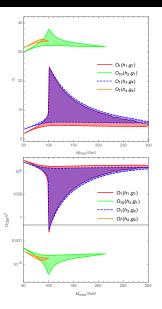


6 / 15

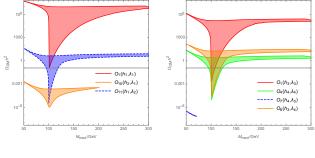
Results for scalar DM

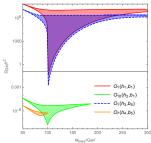
Simplified models corresponding to spin 0 DM.

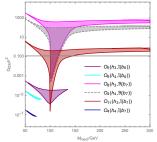
- Ô₇(h₄, g₄) and Ô₁₀(h₂, g₁) not compatible with the thermal production mechanism for any value of M_{med}.
- $\Omega_{\rm DM} h^2$ much smaller than observed.
- $\hat{\mathcal{O}}_1(h_1, g_1)$ and $\hat{\mathcal{O}}_1(h_3, g_4)$ generate values for $\Omega_{\rm DM}h^2$ which are in general too large
- For $M_{\rm med} \sim 100 \text{ GeV}$ \rightarrow resonant production of DM \rightarrow compatible with observed relic density AND XENONnT/LZ signal



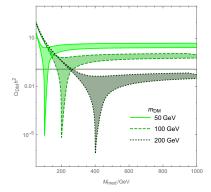
Fermionic DM

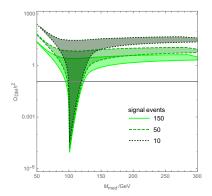






Dependence on m_{DM} and number of signal events

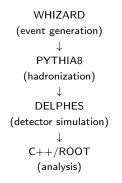


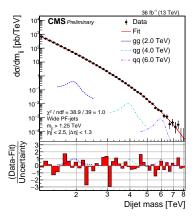


Dijet searches

- Instead of pair of DM, mediator can decay in pair of quarks
 → Pair of jets in the detector
- Reconstuct mediator mass from jet invariant mass m_{jj}

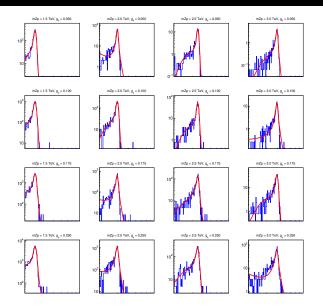
Dijet Simulation:



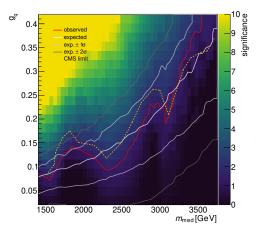


[CMS PAS EXO-16-056]

Simulated Signal

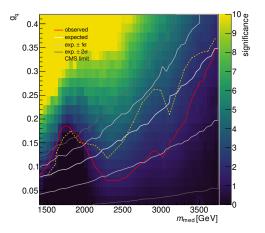


11 / 15

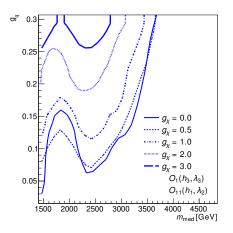


95% C.L. exclusion limits for vector mediator

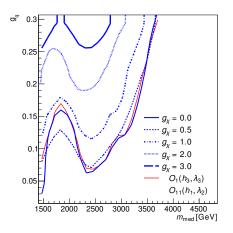
 $36 \, {\rm fb}^{-1} (\sqrt{s} = 13 \, {\rm TeV})$

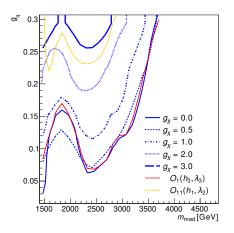


95% C.L. exclusion limits for vector mediator (sideband fit) $36\,{\rm fb}^{-1}(\sqrt{s}=13\,{\rm TeV})$



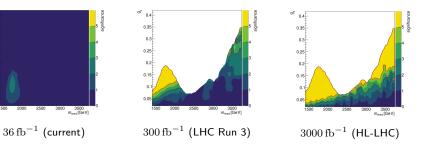
13 / 15





Dijet discovery potential

preliminary



ď

0.4

0.35

0.3

0.25

0.2

0.15

0.

0.05

1500

Conclusions

- \blacksquare If DM is a WIMP \rightarrow good chance of discovery with next generation of detectors
- \blacksquare Signal at XENONnT/LZ \rightarrow valubale information beyond DM mass and interaction strength
- Predictions for DM searches at the LHC
- Test compatibility with thermal production mechanism
- For most models only resonant production possible $(M_{\text{med}} \simeq 2m_{\text{DM}})$
- Analysis will be extended to dijets (work in progress)

Using complimentarity in DM searches, we can learn more about DM properties (couplings,spin,...).

Backup-Slides

Two types of spectra:

Type A: maximum at E=0 (q=0) **Type B**: maximum at E \neq 0 (q \neq 0)

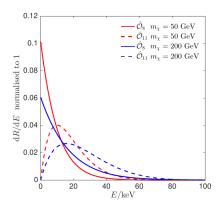
Canonical SI and SD interactions are of type A.

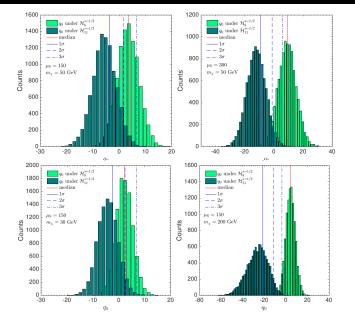
Use test statistic for model selection

$$q_0 = -2 \ln \left[rac{\mathcal{L}(oldsymbol{d} \,|\, \widehat{oldsymbol{\Theta}}_0, \mathcal{H}_0)}{\mathcal{L}(oldsymbol{d} \,|\, \widehat{oldsymbol{\Theta}}_a, \mathcal{H}_a)}
ight]$$

Assumptions:

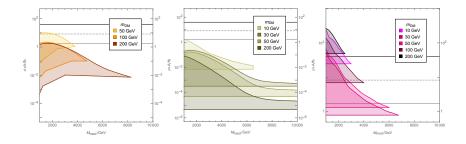
neglect operator evolution and chiral EFT corrections, no charged mediators and universal quark-mediator couplings



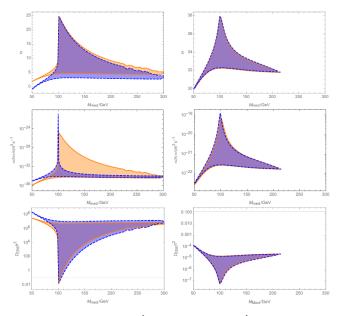


10000 pseudo-experiments each

Dependence on $m_{\rm DM}$



Regions in the $M_{\rm med} - (\sigma \times A)$ plane that are compatible with the detection of $\mathcal{O}(100)$ signal events at XENONNT for three representative simplified models, namely $\hat{\mathcal{O}}_1(h_3, b_5)$, $\hat{\mathcal{O}}_1(h_1, b_1)$ and $\hat{\mathcal{O}}_{11}(h_1, \lambda_2)$, and for the DM particle masses $m_{\rm DM} = 10, 30, 50, 100$ and 200 GeV. Where the cases $m_{\rm DM} = 30$ GeV and $m_{\rm DM} = 100$ GeV are omitted, they only marginally differ from the $m_{\rm DM} = 50$ GeV case.



Comparison of the models $\hat{\mathcal{O}}_1(h_1,g_1)$ (left) and $\hat{\mathcal{O}}_{10}(h_2,g_1)$ (right)