
Macaroons

What are they*, and what are they used for?

* not food

TL;DR:
A macaroon is a fancy cookie :)

What are Cookies?

small files stored on a user's computer

holds modest amount of data specific to a particular client and website

allows server to deliver page tailored to a particular user

What are macaroons?

"Cookies with Contextual Caveats for Decentralized Authorization in the Cloud"

similar enough to cookies that most developers can use them right away

a lot of features that make them much safer to use

Features:
Delegation
Attenuation
Proof-Carrying
Third-Party Caveats
Simple Verification
Decoupled Authorization Logic

Delegation:
Like cookies, macaroons can be used to delegate access rights
Difference: Can limit when, where, and by whom the delegated authority can be exercised
Examples: Within one minute, from a machine that holds a certain key, or by a certain logged-in user



How it works:

User1 creates macaroon --> gives macaroon to User2 --> User2 can now act on behalf of User1

Attenuation:
Caveats can be added to the macaroon (how, when, and where)
restricts how the access rights may be used, making them a lot safer than cookies

Example:

Start-Up "ShadyCorporation" wants to use the cookie access rights

"Just for your address book, we swear!"

If the application supports macaroons, this becomes a lot safer, as the extent on HOW, WHEN and WHERE the rights may
be used can be restricted as necessary

--> Sad data-mining start-up :)

Proof-Carrying:
Macaroons carry their own cryptographically secured proof of authorization
Caveats are constructed chained HMAC functions (easy to add, impossible to remove)

Third-Party Caveats:
Specifies predicates enforced by third parties
Macaroon is only authorized if predicate is satisfied

Simple Verification:
No hard-coded policy
Instead agnostic verifier separate from policy

Decoupled Authorization Logic:
In application, separates policy from mechanism
verifier simply observes policy (in form of embedded proof) and certifies that the proof is correct
policy is specified when macaroon is created, attenuated, and shared



How to Macaroon

example from https://github.com/rescrv/libmacaroons (https://github.com/rescrv
/libmacaroons)

Create macaroon

In [ ]: >>> import macaroons
>>> secret = 'this is our super secret key; only we should know it'
>>> public = 'we used our secret key'
>>> location = 'http://mybank/'
>>> M = macaroons.create(location, secret, public)

public portion informs us about used secret

In [ ]: >>> M.identifier
'we used our secret key

Location tells us where macaroon can be used

In [ ]: >>> M.location
'http://mybank/'

Signature is used for adding caveats and verification

In [ ]: >>> M.signature
'e3d9e02908526c4c0039ae15114115d97fdd68bf2ba379b342aaf0f617d0552f'

Adding caveat

In [ ]: >>> M = M.add_first_party_caveat('account = 3735928559')

Share macaroon by serializing it (pure ASCII)

In [ ]: >>> M.serialize(format=1)
'MDAxY2xvY2F0aW9uIGh0dHA6Ly9teWJhbmsvCjAwMjZpZGVudG...'

In [ ]: >>> print M.inspect()
location http://mybank/
identifier we used our secret key
signature e3d9e02908526c4c0039ae15114115d97fdd68bf2ba379b342aaf0f617d055
2f

Signature changes with each added caveat



In [ ]: >>> M = M.add_first_party_caveat('time < 2020-01-01T00:00')
>>> M.signature
'b5f06c8c8ef92f6c82c6ff282cd1f8bd1849301d09a2db634ba182536a611c49'

In [ ]: >>> M = M.add_first_party_caveat('email = alice@example.org')
>>> M.signature
'ddf553e46083e55b8d71ab822be3d8fcf21d6bf19c40d617bb9fb438934474b6'

In [ ]: >>> print M.inspect()
location http://mybank/
identifier we used our secret key
cid account = 3735928559
cid time < 2020-01-01T00:00
cid email = alice@example.org
signature ddf553e46083e55b8d71ab822be3d8fcf21d6bf19c40d617bb9fb438934474
b6

Send macaroon by first serializing it

In [ ]: >>> msg = M.serialize(format=1)
>>> # send msg to the bank

Verification

In [ ]: >>> M = macaroons.deserialize(msg)
>>> V = macaroons.Verifier()
>>> V.verify(M, secret)
'Traceback (most recent call last):'
'Unauthorized: macaroon not authorized'

Verifier can be informed about caveats

In [ ]: >>> V.satisfy_exact('account = 3735928559')
>>> V.satisfy_exact('email = alice@example.org')

Use cases
Same as cookies:

Session management
Personalization
Tracking

... but better!



Example:

Data store provides macaroons, authorized if and only if the application's authentication service says that the
user is authenticated
User obtains a proof that they are authenticated from service, and presents proof alongside original macaroon to
storage service
Storage service can verify that user is authenticated, without knowing anything about authentication service's
implementation
Standard implementation: storage service can authorize request without communicating with authentication
service.

Thank you for your attention :)

Any questions?


