Macaroons

What are they*, and what are they used for?

* not food

TL;DR:

A macaroon is a fancy cookie :)

What are Cookies?

® small files stored on a user's computer
® holds modest amount of data specific to a particular client and website

® allows server to deliver page tailored to a particular user

What are macaroons?
® "Cookies with Contextual Caveats for Decentralized Authorization in the Cloud"
® similar enough to cookies that most developers can use them right away

® 2 lot of features that make them much safer to use

Features:

® Delegation

® Attenuation

® Proof-Carrying

® Third-Party Caveats

® Simple Verification

® Decoupled Authorization Logic

Delegation:

® | ike cookies, macaroons can be used to delegate access rights
® Difference: Can limit when, where, and by whom the delegated authority can be exercised
® Examples: Within one minute, from a machine that holds a certain key, or by a certain logged-in user



How it works:

User1 creates macaroon --> gives macaroon to User2 --> User2 can now act on behalf of User1

Attenuation:

® Caveats can be added to the macaroon (how, when, and where)
® restricts how the access rights may be used, making them a lot safer than cookies

Example:

Start-Up "ShadyCorporation" wants to use the cookie access rights
"Just for your address book, we swear!"

If the application supports macaroons, this becomes a lot safer, as the extent on HOW, WHEN and WHERE the rights may
be used can be restricted as necessary

--> Sad data-mining start-up :)

Proof-Carrying:

® Macaroons carry their own cryptographically secured proof of authorization
® Caveats are constructed chained HMAC functions (easy to add, impossible to remove)

Third-Party Caveats:

® Specifies predicates enforced by third parties
® Macaroon is only authorized if predicate is satisfied

Simple Verification:

® No hard-coded policy
® |nstead agnostic verifier separate from policy

Decoupled Authorization Logic:

® |n application, separates policy from mechanism
® verifier simply observes policy (in form of embedded proof) and certifies that the proof is correct
® policy is specified when macaroon is created, attenuated, and shared



How to Macaroon

example from https://github.com/rescrv/libmacaroons (https://github.com/rescrv

/libmacaroons)

Create macaroon

In [ 1: >>> import macaroons
>>> secret = 'this is our super secret key; only we should know it'
>>> public = 'we used our secret key'
>>> location = 'http://mybank/'
>>> M = macaroons.create(location, secret, public)

public portion informs us about used secret

In [ ]: >>> M.identifier
'we used our secret key

Location tells us where macaroon can be used

In [ ]: >>> M.location
"http://mybank/’

Signature is used for adding caveats and verification

In [ ]1: >>> M.signature
'e3d9e02908526c4c0039ae15114115d97fdd68bf2ba379b342aaf0f617d0552F"

Adding caveat

In [ ]1: >>> M = M.add_first_party_ caveat('account = 3735928559")

Share macaroon by serializing it (pure ASCII)

In [ ]: >>> M.serialize(format=1)
"MDAXY2xvY2F0aW9uIGhOdHA6LY9teWIhbmsvCjAwMjZpZGVudG. . ."'

In [ ]: >>> print M.inspect()
location http://mybank/
identifier we used our secret key
signature e3d9e02908526c4c0039ael15114115d97fdd68bf2ba379b342aaf0f617d055
2f

Signature changes with each added caveat



In [ 1:

In [ 1:

In [ 1:

>>> M = M.add_first _party caveat('time < 2020-01-01T00:00")
>>> M.signature

'b5f06c8c8ef9216c82c6T1282cd1f8bd1849301d09a2db634bal82536a611c49"’

>>> M = M.add_first _party caveat('email = alice@example.org"')
>>> M.signature

'ddf553e46083e55b8d71ab822be3d8fcf21dobf19¢c40d617bb9Thb438934474b6"

>>> print M.inspect()

location http://mybank/
identifier we used our secret key
cid account = 3735928559

cid time < 2020-01-01T00:00

cid email = alice@example.org

signature ddf553e46083e55b8d71ab822be3d8fcf21d6bf19c40d617bb91b438934474
b6

Send macaroon by first serializing it

In [ 1:

Verification

In [ 1:

>>> msg = M.serialize(format=1)
>>> # send msg to the bank

>>> M macaroons.deserialize(msg)
>>> V = macaroons.Verifier()

>>> V.verify(M, secret)

'Traceback (most recent call last):'
"Unauthorized: macaroon not authorized'

Verifier can be informed about caveats

In [ ]:

Use cases

Same as cookies:

>>> V.satisfy exact('account = 3735928559"')
>>> V.satisfy exact('email = alice@example.org')

® Session management
® Personalization

® Tracking

... but better!



Example:

® Data store provides macaroons, authorized if and only if the application's authentication service says that the
user is authenticated
® User obtains a proof that they are authenticated from service, and presents proof alongside original macaroon to

storage service

® Storage service can verify that user is authenticated, without knowing anything about authentication service's
implementation

® Standard implementation: storage service can authorize request without communicating with authentication
service.

Thank you for your attention :)

Any questions?




