

Tracking Algorithms in the Belle II Drift Chamber

with first pilot run results Nils Braun | 21.03.2018

Introduction to Belle II

Introduction to Belle II

Outline of the following talks

XXIII

 General Cosmics Run (GCR) using the CDC last summer (this talk)

Outline of the following talks

X T

- General Cosmics Run (GCR) using the CDC last summer (this talk)
- Phase 2: Beam-induced background condition measurements with a slice of the VXD beginning of this year and collisions in the next weeks.

Outline of the following talks

- General Cosmics Run (GCR) using the CDC last summer (this talk)
- Phase 2: Beam-induced background condition measurements with a slice of the VXD beginning of this year and collisions in the next weeks.
- Phase 3: Physics data taking with full VXD next year (next talk)

Introduction to the CDC

magnetic field 1.5 T
gas mixture helium, ethane
radius 160 mm – 1130 mm
acceptance 17° – 150°
layers 56
stereo and axial wires radiation length 680 m

Let's find tracks!

Background Filter

Background

Signal

- using a MVA (FastBDT)
- based on variables from clustered hits
- will be tuned with background-only data from random trigger

Global Legendre Algorithm

$$\rho_{\pm}(\theta) = x' \cos(\theta) + y' \sin(\theta) \pm d$$

- shifting binary search with re-centering
- lacksquare ρ dependent maximal level
- multiple passes
- post-processing for curler merging based on fast Riemann fit

Global Cellular Automaton

- clusters
- MVA filters or hand crafted features
- hit-bridging
- extension to track finder possible

Global Cellular Automaton

- clusters, triplets
- MVA filters or hand crafted features
- hit-bridging
- extension to track finder possible

Global Cellular Automaton

- clusters, triplets, segments
- MVA filters or hand crafted features
- hit-bridging
- extension to track finder possible

Overview of CDC tracking

Heat map on first recorded Cosmics data

Heat map on first recorded Cosmics data

Finding Efficiency on recorded Cosmics data

finding efficiency $pprox 1 - rac{N_{
m one\ track\ found}}{N_{
m two\ tracks\ expected}}$

Finding Efficiency on recorded Cosmics data

Preliminary Resolution studies on recorded Cosmics data

Outlook

- Belle II's CDC track finding is based on a global Legendre and a local cellular automaton employing MVA methods.
- It is working well with first Cosmics data as well as with beam-induced background on collision data (will be shown by Felix).
- Not shown: Requirements on processing time and memory consumption for HLT are fulfilled.
- Next step: use first collision data this year!

See the full algorithm in the next talk!

Merging in Legendre Finder

Other Enhancements in Legendre Finder

