

Tracking Algorithms in the Belle II Drift Chamber

with first pilot run results Nils Braun | 21.03.2018

Introduction to Belle II

Introduction to Belle II

Outline of the following talks

SALT.

 General Cosmics Run (GCR) using the CDC last summer (this talk)

Outline of the following talks

XIII

- General Cosmics Run (GCR) using the CDC last summer (this talk)
- Phase 2: Beam-induced background condition measurements with a slice of the VXD this year

Outline of the following talks

Salvador Institut für Technolog

- General Cosmics Run (GCR) using the CDC last summer (this talk)
- Phase 2: Beam-induced background condition measurements with a slice of the VXD this year
- Phase 3: Physics data taking next year (next talk)

Introduction to the CDC

 $\begin{array}{ccc} \text{magnetic field} & 1.5\,\text{T} \\ \text{gas mixture} & \text{helium, ethane} \\ \text{radius} & 160\,\text{mm} - 1130\,\text{mm} \\ \text{acceptance} & 17^\circ - 150^\circ \\ \text{layers} & 56 \\ \text{stereo and axial wires} & 14336 \\ \end{array}$

Belle II

Background Filter

Background

Signal

- using a MVA (FastBDT)
- based on variables from clustered hits
- will be tuned with background-only data

Global Legendre Algorithm

$$\rho_{\pm}(\theta) = x' \cos(\theta) + y' \sin(\theta) \pm d$$

- shifting binary search with re-centering
- lacktriangledown ho dependent maximal level
- multiple passes
- post-processing for curler merging based on fast Riemann fit

Global Cellular Automaton

- clusters
- MVA filters or hand crafted features
- hit-bridging
- extension to track finder possible

Global Cellular Automaton

- clusters, triplets
- MVA filters or hand crafted features
- hit-bridging
- extension to track finder possible

Global Cellular Automaton

- clusters, triplets, segments
- MVA filters or hand crafted features
- hit-bridging
- extension to track finder possible

Overview of CDC tracking

Efficiency on first Cosmics data

Efficiency on first Cosmics data

Finding Efficiency on first Cosmics data

finding efficiency $pprox 1 - rac{N_{
m one\ track\ found}}{N_{
m two\ tracks\ expected}}$

Finding Efficiency on first Cosmics data

Outlook

- Belle II's CDC track finding is based on a global Legendre and a local cellular automaton employing MVA methods.
- It is working well with first Cosmics data.
- Next step: use first collision data this year!

See the full algorithm in the next talk!

