Semi-tauonic Update

Racha Cheaib

Wednesday, April 25, 18

Miscellaneous

- Signal selection scripts have been updated.
- Simple plotting scripts added
- Hadronic FEI skims of generic MC samples are almost ready
 - First run on background FEI skimmed samples: waiting for results.
- Trouble with the validation scripts of cocktail modes.
 - Validation scripts were failing. It took some time to fix. Currently there is an open pull request.
 - Due to low statistics, the validation scripts no longer use FEI. Instead, the generated B_{tag} hadronic mode is reconstructed directly for more statistics.
 - Absence of certain D0 modes is also apparent in the scripts, but I am currently waiting on updated results with more statistics.
 - Validation scripts need monitoring and update constantly. Any volunteers?
- Decided on MC10 samples:
 - Will combine cocktail modes into one file.

Signal Selection:

- Start with FEI skimmed signal MC samples:
 - This is cocktail MC: 12,700,000 BGx1 events and 4000000 BGx0 events.
 - □ Truth-matched using mcPDG variable.
 - Efficiency=

surviving events/total generated events

- Btag cuts:
 - Mbc>5.27 GeV/c
 - -0.1<DeltaE<0.1 GeV</p>
 - signalProbability>0.001
- Btag efficiency:
 - 6.3% BGx1, avg 1.39 candidates/evt
 - 6.77% BGx0 , avg 1.37 candidates/evt

5.272 5.274 5.276 5.278 5.28 5.282 5.284 5.286 5.288

5 29

D^{+/0} reconstruction

#	Decay	BF
1	D + →K -π ⁺ π ⁺	8.98 +/- 0.28%
2	$D + \rightarrow K - \pi^+ \pi^+ \pi^0$	5.98 +/- 0.23 %
3	$D+\rightarrow K_s^0\pi^+$	1.47 +/- 0.08 %
4	$D + \rightarrow K_s^0 \pi^+ \pi^- \pi^+$	2.97 +/- 0.11 %
5	$D + \rightarrow K_s^0 \pi^+ \pi^0$	7.05 +/- 0.27 %
6	D+→K _s ⁰K+	1.05%
7	D ⁰ →K-π ⁺	3.89 +/- 0.04 %
8	$D^0 \rightarrow K_s^0 \pi^0$	1.19 +/- 0.04 %
9	D ⁰ →K-π ⁺ π ⁰	14.2 +/- 0.5 %
10	$D^0 \rightarrow K_{-\pi+\pi^-\pi^+}$	8.11 +/- 0.15 %
11	$D^0 \rightarrow K_s^0 \pi^+ \pi^-$	2.75 +/- 0.18%
12	$D^0 \rightarrow K_s^0 \pi^+ \pi^- \pi^0$	5.1 +/- 0.6%

pi+:95eff , pionID>0.232 and p₁>0.1

 K+:85eff , kaonID > 0.517 and p_T>0.1and 0.3<pCMS<2.8

 pi0 → gamma gamma, E_{gamma}>50 MeV

- and 0.12<InvM<0.15
- Ks0:all →pi+ pi-, 0.45<M<0.55 GeV/c²

D candidates are reconstructed a loose mass cut: 1.7<M<2.1GeV/c² And momentum <3.0 GeV/c

D^{+/0} reconstruction

Mode abundancy:

Same pattern with BGx0 samples

Racha Cheaib, University of Mississippi

D* reconstruction

1. $D^{*+} \rightarrow D^0 \pi^+ 60$ $2. <math>D^{*+} \rightarrow D^+ \pi^0 60$

D* Mode abundancy:

BGx0 D* mode ID

Y(4S)

Combine D* candidate with lepton:

- m+: 90eff with 0.3<p<2.8 GeV/c and muon ID>0.438
- e+:90eff with 0.3<p<2.8 GeV/c and electronID> 0.597

tau_d0_pCMS

Y(4S) D^(*) candidates

Racha Cheaib, University of Mississippi

Y4S $\overline{D^{(*)}}$ candidates

Y4S M2 recoil

Select Y(4S) with Btag with highest signal probability candidate

Y4S missing Energy

ROE

 $\label{eq:ROETracks} \begin{array}{l} \mathsf{ROETracks}_{,,} \mathsf{pt}_{>} 0.05 \ and \ _2_{<} \ dr_{<} 2 \ and \ _4.0_{<} \ dz_{<} 4.0_{>} \\ \mathsf{ROEclusters} = (\mathsf{'ROEclusters'}, \ ", \ \mathsf{'abs}(\mathsf{clusterTiming}) < \mathsf{clusterErrorTiming} \\ \mathsf{and} \ \mathsf{E} > 0.05') \end{array}$

To do:

- Improve best Y(4S) candidate selection:
 - Tighter D mass cuts
 - Tighter D* mass cuts
 - □ Some best Bsig selection.
- Cut on ROE tracks and ROE clusters in a proper manner.
- Ensure proper nTuple tools are written out.
 - Introduce q2 variable in module
- Better event-based tuple:
 - Write out Btag, D, D*, and lepton kinematics.
 - Write out all continuum suppression variables.
 - Write out all event based values.
- Test on full background generic samples.

ROE Tracks ==0

Upsilon4S_Eextra {Upsilon4S_B01_sigProbRank==1&&Upsilon4S_nROETracks==0} htemp Entries 5571 350 Entries 5571 Mean 71.48 3.196 Mean Std Dev 12.56 Std Dev 0.8778 300 200 Eextra 250 nROEClusters 150 200 150 100 100 50 50 0 0 L 60 80 90 100 40 50 70 110 120 8 9 Upsilon4S_nROEECLClusters Upsilon4S_Eextra