Search for collective effects in electron-proton collisions with ZEUS

Jaap Onderwaater

Ilya Selyuzhenkov, Silvia Masciocchi, Stefan Floerchinger, Achim Geiser

Collectivity and related anisotropy in heavy ion collisions

Response of matter produced in the heavy ion collision to the geometry of the initial state.

Produced particles receive a stronger boost along the short axis of the geometry wrt to the long axis (see ellipse on the right)

The amplitude (v_n) of the resulting anisotropy is quantified with a Fourier decomposition:

$$\frac{dN}{d(\varphi - \Psi_R)} = \frac{N_0}{2\pi} (1 + 2\sum_n v_n \cos[n(\varphi - \Psi_R)])$$

Analysis techniques

In this presentation, we focus on the measurement of 2-particle correlations:

$$c_n\{2\} = \langle \langle 2 \rangle \rangle \equiv \left\langle \left\langle e^{in(\phi_1 - \phi_2)} \right\rangle \right\rangle$$
 $v_n\{2\} = \sqrt{c_n\{2\}}$

The inner brackets denote the average in a single event, the outer brackets the average over all events.

The correlation will be studied as a function of event multiplicity, separation of tracks in pseudorapidity, and as a function of transverse momentum.

Different mechanisms resulting in 2-particle correlations

Multiple mechanisms contribute to (multi)particle correlations, from the initial state to response to the initial geometry.

Correlations contain flow, flow fluctuations and nonflow.

$$\langle\langle e^{in(\phi_a - \phi_b)} \rangle\rangle = \langle v_n^2 \rangle + \delta_n$$

Flow fluctuations: $\sigma_{vn}^2 = \langle v_n^2 \rangle - \langle v_n \rangle^2$

Nonflow: δ_n : resonances, jets, decays, momentum conservation

Suppression of δ_n (suppression of few particle correlated clusters):

- High multiplicity $\delta_2 \sim 1/M$
- Pseudo-rapidity gap (particles from jets and decays are mostly closeby in η)

Data/MC samples and tracks

```
~30 * 10<sup>6</sup> million DIS events
Efficient trigger above certain Q<sup>2</sup> (~5-10 GeV)
```

```
Tracks:
```

```
0.1 < p_T < 5 \text{ GeV/}c
-1.5 < \eta < 2.0
```

Monte carlo: ari_incl_nc_DIS Ariadne_Low_Q2_NC_DIS Lepto_low_Q2_NC_DIS

Analysis

Analyzed data sets (common ntuples)

	Trigger events (x10 ⁶)	
Period	ALL (official)	DIS
03p	3.7	0.24
04p	47	4.6
05e	132	1.7
06e	44	7.0
06p	87	12
07p	41	5.4
All	355	31

DIS: Detected electron, Q² > 5 GeV, E_e > 10 GeV, 47 <E- p_z < 69 GeV, θ_e >1, e_p > 0.9, exclusion of some problematic detector areas

Event selection

- DIS / PHP trigger selection
- -30 < vertex Z < 30 cm
- Fraction of tracks associated to event vertex > 0.1
- N_{vtx} tracks > 0
- Event vertex from beam spot (R_{xy}) < 0.5

Track selection

- $0.1 < p_T < 5 \text{ GeV/}c$
- $-1.5 < \eta < 2.0$
- Tracks constrained to the vertex (orange.Trk_prim_vtx = true)
- Exclude scattered electron (orange.Trk_id[itrack] != orange.Sitrknr[0])
- Trk_Imppar < 1.0 cm

Correcting for detector effects

Particles reconstruction efficiency as a function of p_T , η , φ , charge and event multiplicity is considered.

Particle weights are extracted in two steps:

- 1. p_{T} - η -charge efficiency is calculated by comparing generated and reconstructed yields in simulation
- 2. φ weights are extracted from data, after filling φ - η -charge-event multiplicity maps with the weights from step 1

The product of 1. and 2. gives the track weight. Weights are calculated separately for each dataset.

The 2-particle correlation is modified to include weights:

$$< c_n > = \sum w_i w_j \cos(n \varphi_i^a - n \varphi_j^b) / \sum w_i w_j$$

Determining p_{T} - η efficiency

Charged primary particle:

- Charged particle with lifetime $\tau > 1$ cm/c
- Production vertex < 1cm from event vertex (to exclude production from secondary interactions)

	Width Γ	Mean prop	er lifetime τ
Specie	(GeV)	(ps)	(cm/c)
p ⁺	0	∞	∞
γ	0	∞	∞
K^0	0	∞	∞
e ⁻	0	∞	∞
n	7.478×10^{-28}	$8.861 \times 10^{+14}$	$2.656 \times 10^{+13}$
μ-	2.996×10^{-19}	$2.212 \times 10^{+06}$	$6.63 \times 10^{+04}$
K_L^0	1.287×10^{-17}	$5.148 \times 10^{+04}$	1543
π^+	2.528×10^{-17}	$2.621 \times 10^{+04}$	785.7
K ⁺	5.317×10^{-17}	$1.246 \times 10^{+04}$	373.6
Ξ^0	2.27×10^{-15}	291.9	8.751
Λ	2.501×10^{-15}	264.9	7.943
Ξ-	4.02×10^{-15}	164.8	4.941
Σ^{-}	4.45×10^{-15}	148.9	4.464
K _S ⁰	7.351×10^{-15}	90.14	2.702
Ω^-	8.071×10^{-15}	82.1	2.461
Σ^+	8.209×10^{-15}	80.72	2.42

Determining φ -weights from data

Particle yields are measured in η - φ -charge-M bins, after weighting with acquired $p_{\rm T}$ - η -charge weights in the previous slides.

In each η -charge-M slice, weights are calculated to make φ uniform while maintaining the integral in the slice.

Study of systematics

Class	Default	Variation
DIS event selection	47 < E-p _z < 69	45 < E-p _z < 71 46 < E-p _z < 68
	$\theta_{e} > 1.0$ $P_{e} > 0.9$	θ _e > 0.5 P _e > 0.8
	E _e > 10	E _e > 9 E _e > 11
	Chimney cut, radius cut, CAL crack cut	
Event quality selection	-30 < Z _{vtx} < 30 cm	-30 < Z _{vtx} < -8 cm -8 < Z _{vtx} < 8 cm 8 < Z _{vtx} < 30 cm
	Fraction of tracks constrained to vertex = 0.1	0.2
	R _{vtx} < 0.5 cm	R _{vtx} < 0.7
Track selection	Impact parameter < 1.0 cm	p _T dependent
Corrections	Particle weights with ari_incl_nc_DIS_lowQ2	Other MC samples

Systematic error calculation

Of the so far explored variations, the event Z vertex gives the largest deviations.

For variations for which we cannot account/correct and as long as they are within acceptable limits, the deviations are added in quadrature.

$c_2^{2} {\Delta \eta > 0.5} \text{ vs N}_{ch}$

Aim for preliminary

2_n-particle correlations as a function of event multiplicity for different pseudo-rapidity separation

- Multiplicity range is statistically limited from 2 to approximately 30
- Increasing η separation leads to weaker correlations (suppressed nonflow)
- After initial drop, correlations become weakly dependent on N_{ch}

2_n-particle correlations as a function of event multiplicity for different pseudo-rapidity separation

Comparison to MC

 $\langle \cos(2(\phi_a - \phi_b)) \rangle$ Inclusive Ariadne Low Q2 Ariadne Low Q2 Lepto -- c₂{2} DIS 0.08 0.06 0.04 0.02 10 15

At higher multiplicity, well described by Ariadne

At highest multiplicity, well described by Lepto

To do: systematic on simulation

Differential c₁{2} comparisons with MC

Good agreement for Ariadne, less for Lepto

To do: systematic on simulation

Inclusive Ariadne

Low Q2 Ariadne

Differential $c_2\{2\}$ comparisons with MC

Good agreement for Lepto, less for Ariadne

To do: systematic on simulation

4-particle cumulant at ZEUS

$$\langle 4 \rangle = \langle e^{in(\varphi_1 + \varphi_2 - \varphi_3 - \varphi_4)} \rangle$$

$$c_n{4} = \langle \langle 4 \rangle \rangle - 2 \langle \langle 2 \rangle \rangle^2$$

$$v_n\{4\} = \sqrt[4]{-c_n\{4\}}$$

- Negative c₂{4} for <N_{ch}> above ~60 in pPb and PbPb
- For pp values are close to zero

- No hint of negative values
- Multiplicity range more limited than with 2-particle correlations

Comparison to other systems

These comparisons are not yet in their final conceptual form.

Magnitude is roughly in ballpark of other systems, but comparison not straightforward

Physics messages

- No long range correlations at high (or any) multiplicity visible
- Measurement of the correlations for different harmonics, and as a function of multiplicity, pair pseudorapidity, pair transverse momentum, pair $\Delta p_{\scriptscriptstyle T}$
- Comparisons to different Monte Carlo generators
 - More understanding of the generators and the interpretation is still required
- Statistical limitation for 4-p cumulant
- Comparison to other systems

Todo for the results

- Add contributions to uncertainty in the measurement from
 - o "chimney" cuts
 - Use other generators for tracking efficiency correction
 - Lepton "contamination" estimate
- Estimate uncertainty on simulation curves

Current error summation is sum of squares, which is the conservative option.

Documentation

Presentations:

Analysis proposal, September 2016

ZAF update, February 2017

ZAF update, June 2017

ZAF update, July 2017

ZAF update, August 2017

ZAF update, September 2017

ZAF update, Oktober 2017

Analysis code:

/afs/desy.de/user/o/onderwaj/zeus/analysis

Analysis Note:

/afs/desy.de/user/o/onderwaj/Note.pdf

Number of vertex tracks vs Zvtx

$\Delta \varphi$ - $\Delta \eta$ correlations

