Transfer matrix for high-x MC and Study of impact of high-x data on parton distribution functions

Ritu Aggarwal, Allen Caldwell

Motivation of studying published high-x data

Note the uncertainity bands above $x \sim 0.65$, can high-x data impact here

Reconstructed MC events in Xsection Binning (total 153 bins)

True x-Q2 distribution of events in Xsection Binning

extended binning in M has total 429 bins

Definition of Transfer matrix

Each element in Transfer Matrix is represented as

$$a_{ij} = \frac{\sum_{k=1}^{M_i} \omega_k I(k \in j)}{\sum_{k=1}^{M_i} \omega_k}$$

 a_{ij} = probability of an event reconstructed in j^{th} bin to come from i^{th} bin

 ω_{k} = weight given to k^{th} event in bin i

I = 1 if k^{th} event is reconstructed in bin j, else = 0

Transfer Matrix

Using Transfer matrix to predict no. of events reconstructed in a given cross section bin

Using Transfer matrix to predict no. of events reconstructed in a given cross section bin

Where for each (Q2,x) bin

M_PDF = M_CTEQ5d *(RedXsec_PDF / RedXsec_CTEQ5D)

Comparison Shown on next slide

Ratio of Vector M for the given PDF in extended binning (e+p) to CTEQ5D

There is a normalization difference between HERAPDF & other PDFs!

Ratio of Vector M for the given PDF in extended binning (e-p) to CTEQ5D

There is a normalization difference between HERAPDF & other PDFs!

Ratio of No. of events in data to HERAPDF2.0 NLO and 1,2,3 sigma bands from Poisson Statistics ZEUS e+p data

Ratio of No. of events in data to HERAPDF2.0 NLO and 1,2,3 sigma bands from Poisson Statistics ZEUS e-p data

Relative probability for data from different PDFs

$$P(n|v) = (v^n e^{-v}) / n!$$
 Where $v_i = \sum_j A_{ij} m_j$ and reweighted to luminosity of data

BRIEF ARTICLE

	e^+p			e ⁻ p			
PDF	$\ln P$	<i>p</i> -value	$\Delta \chi^2$	$\ln P$	<i>p</i> -value	$\Delta \chi^2$	
CTEQ5D	-531.2	0.68	0	-577.0	0.079	0	
HERAPDF1.5	-528.3	0.76	-5.8	-581.6	0.022	+9.2	
HERAPDF2.0	-535.3	0.49	+8.2	-579.0	0.044	+4.0	
MMHT2015	-527.3	0.70	-7.8	-599.8	0.00010	+45.6	
CT10nlo	-528.4	0.66	-5.6	-597.2	0.00011	+40.4	
NNPDF2.3	-529.0	0.64	-4.4	-600.4	0.00004	+46.8	
HERAPDF2.0 NNLO	-535.6		+8.8	-576.98		-0.04	
HERAPDF2.0 HiQ2 NNLO	-533.7		+5.0	-578.5		+3.0	

TABLE 1. The results from comparisons of predictions using different PDF sets to the observed numbers of events. The log of the probability, the corresponding p-value, and the effective χ^2 difference relative to the CTEQ5D result are given. The results are shown separately for the e⁺p and e⁻p data sets. The results are for the full Bjorken-x range given in [?].

Check 1: Comparing N (calculated from Transfer Matrix) for different Pdfs For high-x bins only (~20 bins)

Calculate Poisson probability P(n|v) for each bin of [N] from different PDFs

$$\prod_{i} P(n|v) = \prod_{i} (v^{n} e^{-v}) / n!$$

Calculating the relative Probablity wrt. CTEQ5D

	e^+p		$\mathrm{e^{-}p}$	
	x < 0.6	$x \ge 0.6$	x < 0.6	$x \ge 0.6$
PDF	$\ln P$	$\ln P$	$\ln P$	$\ln P$
CTEQ5D	-472.8	-58.3	-515.9	-61.0
HERAPDF1.5	-470.6	-57.7	-520.3	-61.0
HERAPDF2.0	-475.2	-60.0	-517.4	-61.4
MMHT2015	-472.4	-54.9	-537.2	-62.9
CT10nlo	-473.0	-55.3	-535.5	-62.0
NNPDF2.3	-473.8	-55.3	-538.7	-62.0

Table 2. The results from comparisons of predictions using different PDF sets to the observed numbers of events. The log of the probability is given for two different x ranges for the e^+p and e^-p data sets.

Statistical Error: N (calculated from Transfer Matrix) for different Pdfs

$$\delta a_{ij}^{\text{stat}} = \sqrt{\frac{a_{ij}(1 - a_{ij})}{M_i}}$$

Where Mi are the total number of events Generated in MC

For most of the bins with in 1%, increases to 6-10% in the highest x-bins at high Q2.

Nomalization Error: Vary M by 1.8 % up and down and calculate LogP.

BRIEF ARTICLE

+1.8 %						
	e^+p		e ⁻ p			
	x < 0.6	$x \ge 0.6$	x < 0.6	$x \ge 0.6$		
PDF	$\ln P$	$\ln P$	$\ln P$	$\ln P$		
CTEQ5D	-472.8	-58.3	-515.9	-61.0		
HERAPDF1.5	-470.6	-57.7	-520.3	-61.0		
HERAPDF2.0	-475.2	-60.0	-517.4	-61.4		
MMHT2015	-472.4	-54.9	-537.2	-62.9		
CT10nlo	-473.0	-55.3	-535.5	-62.0		
NNPDF2.3	-473.8	-55.3	-538.7	-62.0		
-1.8 %						
	e^{+}	p	e ⁻ p			
	x < 0.6	$x \ge 0.6$	x < 0.6	$x \ge 0.6$		
PDF	$\ln P$	$\ln P$	$\ln P$	$\ln P$		
CTEQ5D	-472.8	-58.3	-515.9	-61.0		
HERAPDF1.5	-470.6	-57.7	-520.3	-61.0		
HERAPDF2.0	-475.2	-60.0	-517.4	-61.4		
MMHT2015	-472.4	-54.9	-537.2	-62.9		
CT10nlo	-473.0	-55.3	-535.5	-62.0		
NNPDF2.3	-473.8	-55.3	-538.7	-62.0		

Table 4. The results from comparisons of predictions using different PDF sets increased by 1.8 % (top) and decreased by 1.8 % (bottom) to the observed numbers of events. The log of the probability is given for two different x ranges for the e^+p and e^-p data sets.

Systematic Errors: New a_ij according to systematic variation up and down

	e^+p		e ⁻ p		
Systematic	$\ln P$	p-value	$\ln P$	<i>p</i> -value	
	up : down	up:down	up : down	up : down	
Electron energy scale	-533.4:-531.6	0.62:0.60	-576.7:-579.3	0.09:0.03	
Electron energy resolution	-530.5:-532.7	0.68:0.65	-578.6:-576.3	0.05:0.09	
Electron isolation cut	-532.7:-528.9	0.61:0.74	-576.5:-580.7	0.08:0.02	
Hadronic energy scale	-531.4:-531.2	0.66:0.67	-577.3:-576.8	0.068:0.072	
FCAL alignment	-530.8:-531.5	0.69:0.66	-576.7:-576.9	0.085:0.075	
F-BCal Crack cut	-531.1:-531.2	0.68:0.69	-575.2:-578.5	0.052:0.108	
MEPS/Ariadne reweighting	-530.8:-532.0	0.69:0.64	-576.0:-578.7	0.083:0.059	

TABLE 5. The log of the probability and the p-value for various systematic checks performed for the e^+p and e^-p data sets.

Nomial value for comparisor	e^+p			e^-p		
PDF	$\ln P$	p-value	$\Delta \chi^2$	$\ln P$	p-value	$\Delta \chi^2$
CTEQ5D	-531.2	0.68	0	-577.0	0.079	0

Results

- 1) Technique of building Transfer Matrix Shown.
- 2) Transfer Matrix can be used to predict number of events in the given cross section bins in MC.
- 3) Transfer Matrix can be used to compare number of events reconstructed by different PDFs.
- 4) A comparison of different PDFs can be done on the basis of best explanation to the high-x data using Transfer Matrix.
- 5)Statistical, normalization and systemtic errors in a_ij checked.
- 6) How to propagate them to the expectations: to be studied.

Back Up (some Old slides)

extended binning Bin number (total 429 bins)

extended binning generated events (sum of weights)

Ni recon data (El-pt jet method)

Why do we study in Probability numbers

What types of probabilities do we expect?

E.g., imagine you expect 1 event, and measure 1, then the probability is

$$P(n|\nu) = e^{-\nu} \frac{\nu^n}{n!} = e^{-1} \approx 0.37$$

E.g., imagine you expect 10 events, and measure 8, then the probability is

$$P(n|\nu) = e^{-\nu} \frac{\nu^n}{n!} = e^{-10} \frac{10^8}{8!} \approx 0.11$$

E.g., imagine you expect 100 events, and measure 90, then the probability is

$$P(n|\nu) = e^{-\nu} \frac{\nu^n}{n!} = e^{-100} \frac{100^{90}}{90!} \approx 0.02$$

If we have 150 bins with probabilities ranging from a few % to few 10 %, then

$$P({n}|{\nu}) = \prod_{i=1}^{150} e^{-\nu_i} \frac{\nu_i^{n_i}}{n_i!} \text{ maybe } 10^{-200} \text{ ln } P \approx -500$$

Why do we study in Probability numbers

If the likelihood (product of the data probabilities) is a product of Gaussian distributions, then we have

$$\mathcal{L} \propto e^{-\chi^2/2}$$
 and $\ln \mathcal{L}_1 - \ln \mathcal{L}_2 = \frac{1}{2}(\chi_2^2 - \chi_1^2)$

So we can translate differences in the In of the probabilities (multiplied by -2) to equivalent chi squared differences

If we look at ratios of probabilities, and again assuming Gaussian distributions, then

$$\frac{P_1}{P_2} = e^{-(\chi_1^2 - \chi_2^2)/2}$$

so taking -2* the natural logarithm of a probability ratio is again equivalent to a chi squared difference

FIGURE 4. Distribution of expected values for $\ln P(D|M=CTEQ)$ for the e⁺p data set. The arrow shows the value found in the data.

Study II - Check the Probability for each member in HERAPDF2.0 Error band For $Q^2 \sim 9200 \text{ GeV2}$

28 Eigen Vector members

Prob[0]: Central value

13th (last) member in the Vector Corresponds to u-valence parameter

Variation in the PDFs within HERAPDF2.0 much smaller than the inter PDF variation. Big change comes from #13 which has different normalization!

How other PDFs behave in the same $x-Q^2$ region For Q^2 ~ 9200 GeV2

Difference between PDFs much bigger than difference within HERAPDF set!

Check 1: Comparing N (calculated from Transfer Matrix) for different Pdfs For high-x bins only (~20 bins) e+p

Q2bin x bin N_data CTEQ5D CT10nlo HERAPDF1.5 HERAPDF2.0 MMHT2014 NNPDF2.3 650 -800, 0.26 - 1.00, 371, 405.72, 394.06, 410.30, 423.25, 389.24, 393.99 950, 0.28 - 1.00, 482, 489.51, 474.57, 495.66, 511.02, 468.23, 474.34 800 -1100, 0.32 - 1.00, 281, 306.00, 295.75, 309.94, 319.02, 291.59, 295.59 950 -1300, 0.34 - 1.00, 275, 263.15, 253.57, 266.32, 273.48, 249.89, 253.43 1100 -1500, 0.36 - 1.00, 146, 159.65, 153.43, 161.38, 165.35, 151.13, 153.32 1300 -1800, 0.39 - 1.00, 115, 137.63, 131.77, 138.76, 141.57, 129.71, 131.65 **1500 -**2100, 0.43 - 1.00, 62, 71.67, 68.33, 71.88, 72.89, 67.21, 68.25 1800 -2400, 0.46 - 1.00, 31, 40.99, 38.95, 40.84, 41.15, 38.27, 38.89 2100 -2800, 0.50 - 1.00, 27, 29.22, 27.68, 28.83, 28.79, 27.16, 27.62 2400 -3200, 0.54 - 1.00, 13, 15.03, 14.20, 13.90, 14.15 2800 -14.62, 14.43, 3800, 0.58 - 1.00, 11, 11.01, 3200 -10.41. 10.53, 10.26, 10.15, 10.35 4500, 0.63 - 1.00, 6, 4.82, 3800 -4.57, 4.47, 4.26, 4.43, 4.53 2.67, 2.47, 2.79, 2.86 6000, 0.69 - 1.00, 3, 3.03, 4500 -2.92, 8000, 0.59 - 0.73, 1, 4.44, 6000 -4.16, 4.18, 3.98, 4.03, 4.11 8000, 0.73 - 1.00, 6000 -0.98, 0.96, 0.83, 0.75, 0.90, 0.93 11000, 0.57 - 0.64, 2, 8000 -2.29, 2.13, 2.21, 2.13, 2.07, 2.11 1.63, 1.49, 8000 -11000, 0.64 - 0.78, 1.82, 1.64, 1.68 1.72, 8000 -11000, 0.78 - 1.00, 0.34, 0.32, 0.33 0, 0.35, 0.27, 0.23, 20000, 0.60 - 1.00, 11000 -2.99. 2.82, 2.80, 2.60, 2.70, 2.75

Check 1 : Comparing N (calculated from Transfer Matrix) for different Pdfs For high-x bins only (~20 bins) e-p

Q2bin x bin N_data CTEQ5D CT10nlo HERAPDF1.5 HERAPDF2.0 MMHT2014 NNPDF2.3

```
650 -
        800, 0.26 - 1.00, 504, 532.79, 517.39, 537.46, 555.91, 511.00, 517.30
       950, 0.28 - 1.00, 671, 635.27, 615.70, 642.07, 663.36, 607.38, 615.41
800 -
       1100, 0.32 - 1.00, 414, 407.28, 393.53, 412.05, 424.52, 388.02, 393.37
950 -
        1300, 0.34 - 1.00, 368, 348.28, 335.45, 352.39, 361.86, 330.60, 335.31
1100 -
        1500, 0.36 - 1.00, 202, 210.08, 201.77, 212.44, 217.51, 198.75, 201.66
1300 -
1500 -
        1800, 0.39 - 1.00, 173, 181.26, 173.43, 182.95, 186.35, 170.75, 173.33
1800 -
        2100. 0.43 - 1.00. 74. 95.75. 91.18.
                                              96.29. 97.25. 89.70. 91.12
2100 -
        2400, 0.46 - 1.00, 51, 53.00, 50.29,
                                              53.01, 53.10, 49.43, 50.25
        2800, 0.50 - 1.00, 36,
                                                             34.90, 35.52
2400 -
                               37.61, 35.57,
                                              37.30, 36.94,
        3200, 0.54 - 1.00, 19,
2800 -
                               20.34, 19.21,
                                                      19.49,
                                                             18.80, 19.16
                                              19.95,
        3800, 0.58 - 1.00, 17,
3200 -
                               14.32. 13.52.
                                              13.81. 13.28.
                                                             13.18. 13.47
        4500, 0.63 - 1.00, 5, 6.32, 6.00,
3800 -
                                              5.93, 5.55,
                                                             5.80, 5.95
        6000, 0.69 - 1.00, 3, 4.34, 4.18,
                                              3.88, 3.50,
                                                             3.98,
4500 -
                                                                   4.11
        8000, 0.59 - 0.73,
6000 -
                          10,
                                5.88, 5.49,
                                              5.53, 5.22,
                                                             5.32,
                                                                   5.46
        8000, 0.73 - 1.00,
                          1,
6000 -
                               1.47,
                                      1.43,
                                              1.26,
                                                      1.11,
                                                            1.34,
                                                                   1.39
       11000, 0.57 - 0.64,
- 0008
                           4,
                                4.05, 3.75,
                                              3.86,
                                                      3.73.
                                                            3.64.
                                                                   3.73
       11000, 0.64 - 0.78,
8000 -
                           1,
                                2.46, 2.32,
                                              2.21,
                                                      2.02, 2.21,
                                                                   2.28
       11000, 0.78 - 1.00,
                                0.32,
                                      0.34,
8000 -
                           1,
                                              0.24,
                                                      0.19,
                                                            0.30,
                                                                   0.31
        20000, 0.60 - 1.00, 8,
                                                                   4.90
11000 -
                                5.28,
                                      4.94,
                                              4.82,
                                                      4.58,
                                                            4.75,
```