

Part2 – VXDTF2 MVA QE: Figures of Merit and Helix parameters

Online Tracking Meeting Sebastian Racs | 3rd April 2018

Part 2 - Re-doing studies

Basics

- Why is there a drop in Hit Efficiency when using the VXDTF2 MVA?
- On master state 9f24b7cd40a (22.03.18)
- 20k \Upsilon(4S) events with official phase 3 Bkg overlay 15th Campaign
- SVDonly tracking

What was done?

- Look at figures of merit and helix parameters
- Compare Fit values with MC values for RecoTracks:
 - Δ param_i = param_{i,PR} param_{i,True}
 - ⇒ Table with Resoultion: standard deviation and 68% Quantile Width

68% Quantile Width (or $\pm 1\sigma$ equivalent range)

68% wd = percentile_{84%} (Δ param) - percentile_{16%} (Δ param)

Figures of merit & Helix parameters

	# Tracks	# Matched	# Fitted	# Mat.&Fit	% Mat.&Fit
MVA X	214 413	201 417	206 270	198 035	0.9236
MVA ✓ OverlapChk ✓ Time 🗡	215 484	203 266	210 765	201 883	0.9369
MVA ✓ OverlapChk ✓ Time ✓	215 342	203 276	210 566	201 888	0.9375
MVA new OverlapChk ✓ Time ✓	215 410	203 348	210 673	201 925	0.9374
MVA new OverlapChk X Time V	215 508	203 276	210 432	201 880	0.9368
MVA prev. OverlapChk ✓ Time X	215 172	196 925	179 030	168 347	0.7824

	Find. Eff.	Hit Eff.	Clone Rate	Fake Rate	Hit Purity	avg. # hits	layer 3	layer 4	layer 5	layer 6
MVA 🗡	0.9591	0.9591	0.0006	0.0601	0.9875	7.87	1.855	2.104	1.980	1.930
MVA ✓ OverlapChk ✓ Time X	0.9668	0.8962	0.0008	0.0560	0.9917	7.26	1.644	1.955	1.867	1.798
MVA ✓ OverlapChk ✓ Time ✓	0.9670	0.9019	0.0006	0.0554	0.9923	7.30	1.666	1.963	1.872	1.802
MVA new OverlapChk 🗸 Time 🗸	0.9673	0.8931	0.0007	0.0553	0.9925	7.23	1.637	1.946	1.863	1.788
MVA new OverlapChk X Time V	0.9669	0.8940	0.0007	0.0561	0.9929	7.24	1.670	1.947	1.860	1.763
MVA prev. OverlapChk ✓ Time 🗡	0.9379	0.7350	0.0026	0.0824	0.9307	6.46	1.504	1.691	1.671	1.595

	Δd_0 (cm)		$\Delta \tan \lambda$		$\Delta\omega$ (1/cm)		$\Delta \phi_0$		Δz_0 (cm)		Δp_t (GeV)	
	std	mid 68%	std	mid 68%	std	mid 68%	std	mid 68%	std	mid 68%	std	mid 68%
MVA X	0.4162	0.0578	0.1443	0.0189	0.0090	0.0021	0.4060	0.0212	0.346	0.0543	3.163	0.0500
MVA ✓ OverlapChk ✓ Time X	0.3746	0.0654	0.1446	0.0193	0.0072	0.0022	0.3858	0.0225	0.337	0.0584	1.477	0.0521
MVA ✓ OverlapChk ✓ Time ✓	0.3720	0.0638	0.1445	0.0193	0.0072	0.0022	0.3782	0.0221	0.335	0.0576	1.393	0.0517
MVA new OverlapChk 🗸 Time 🗸	0.3730	0.0646	0.1444	0.0194	0.0072	0.0022	0.3855	0.0223	0.336	0.0584	1.485	0.0519
MVA new OverlapChk X Time <	0.3689	0.0639	0.1451	0.0196	0.0071	0.0022	0.3844	0.0223	0.338	0.0600	1.316	0.0512
MVA prev. OverlapChk 🗸 Time 🗶	0.6811	0.1355	1.0245	0.0244	0.0168	0.0041	0.5851	0.0410	11.031	0.0886	38.037	0.1005

Hit & Finding Efficiency by p_t Profile

Helix parameter distributions

 Markers signify position of 16% and 84% percentiles that enclose middle 68% of total distribution

Helix parameter distributions

 Markers signify position of 16% and 84% percentiles that enclose middle 68% of total distribution

Helix parameter distributions

 Markers signify position of 16% and 84% percentiles that enclose middle 68% of total distribution

Helix parameter resolutions by p_t Profile

Helix parameter resolutions by p_t Profile

of SVD Hits (per Track)

Layer of First & Last SVD Hit

of SVD Hits on Layer (per Track)

QI Cutting

Discussion

- The **previously** "new" weightfile seems to be faulty
- No MVA (OverlapCheck with TripletFit QI) produces best vertex resolutions when considering 68% quantile, not when considering standard deviation