Track Reconstruction Performance for Semi-stable Charged Particles at CMS

Samuel Bein, Viktor Kutzner, Peter Schleper, Georg Steinbrück, Alexandra Tews, Benedikt Vormwald

Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

GEFÖRDERT VOM

Weekly Shorttracks Meeting April 13th, 2018

Tracking Efficiency for Short Tracks

- New method: tracking efficiency for short tracks
- Determined in-situ from data
- Shorten one long track per event to a certain length
- Shortening on the basis of clusters
- Full re-reconstruction of the track remains i.e. seeding, pattern recognition,
- Matching of reco. track to sel. track: $\Delta R < 0.01$

Tracking Efficiency for Short Tracks

Which track length is still efficiently reconstructed?

Efficiency at track length l = x:

$$\begin{array}{l} \epsilon_{l=x}^{total} = \epsilon_{l=all\ lengths}^{reco.} \times \epsilon_{l=x}^{reco.}, \\ \epsilon_{l=x}^{reco.} = \frac{N_{l=x}^{re-reco.}}{N_{l=x}}, \ N = \text{no. of tracks} \end{array}$$

- 2016 and 2017 pp-collision data, $\sqrt{s}=13$ TeV, 4M events each
- SingleMuon trigger events with ≥ 1 candidate track

Even tracks with only 3 hit layers can still be reconstructed with an efficiency of $\epsilon_{l=3}^{reco.} = 66 - 72\%$, [I] = hit layers

Impact of Decreasing Track Length on Momentum Resolution

5 track parameters (track helix) retrieved from reconstruction \rightarrow resolutions

Momentum resolution determined from MC for tracks with average length:

- Difference between reco. tracks' and gen. particles' parameters
- $\begin{array}{l} \bullet \quad \text{Momentum resolution for muons} \\ \text{with } p_t \approx 100 \,\, \text{GeV}, \\ |\eta| < 1.4: 2.8 \,\, \% \end{array}$

Studied deviation in momentum resolutions for short tracks:

- In bins of p_t , $|\eta|$ and ϕ
- 2016 RunB, 1079 sel. tracks,

Fitting Procedure for Resolution Residuals

Example: production with 4 hit layers remaining per track

- **3** Distribution of $\Delta(\frac{1}{p_t}) = \frac{1}{p_t^{true}} \frac{1}{p_t^{reReco}}$
- 2 'true' \leftrightarrow from pre-selection, before removal and reRECO
- ② Fit with gaus function \rightarrow problem: Distribution of $\Delta(\frac{1}{p_t})$ broadens with decreasing amount of hit layers, Statistics decrease (massively)
- Rebin distribution until 65 % of all entries lie in the peak (Peak := mean ± 1 stdv.)
- ullet Fit in a range of mean* \pm 1 stdv.
- $\bullet \ \sigma_{\frac{1}{n_+}} = \ \sigma_{gaus} \ (+ \ error)$

Nominal Track Momentum Resolution

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTRK

Impact of Decreasing Track Length on Momentum Resolution in Bins of $|\eta|$ and ϕ

Impact of Decreasing Track Length on Vertex Resolution

Vertex resolution determined from MC for tracks with average length:

- Difference between reco. tracks' and gen. particles' parameters
- Vertex resolution for muons with $p_t \approx 100$ GeV, $|\eta| < 1.4:10~\mu{\rm m}$ (trans.), 30 $\mu{\rm m}$ (long.)

Studied deviation in vertex resolution for short tracks:

- In bins of nr. of tracks defining the vertex
- Bins of $\underline{p_t}$ and $|\eta|$ planned with more statistics
- 2016 RunB, 1079 sel. tracks,

Impact of Decreasing Track Length on Vertex Resolution

Vertex resolution determined from MC for tracks with average length:

- Difference between reco. tracks' and gen. particles' parameters
- Vertex resolution for muons with $p_t \approx 100$ GeV, $|\eta| < 1.4$: 10 μ m (trans.), 30 μ m (long.)

Studied deviation in vertex resolution for short tracks:

- In bins of nr. of tracks defining the vertex
- Bins of $\underline{p_t}$ and $|\eta|$ planned with more statistics
- 2016 RunB, 1079 sel. tracks,