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Machine learning basics

*  Build a mathematical model to
represent inherent characteristics of a

dataset

While not explicitly programming it

+ Use it to make predictions based on
new data, typically:

Classification —

Regression —

» |.e. predicting an objective,“y”, given a
vector of input features (variables),“x”

+ Can exploit the correlations of inputs
to gain a sophisticated prediction that
would be very difficult to design
otherwise
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Machine learning types

Am | hungry?
7N\
- Supervised learning (training data required), e.g.: ., Have | 25% 2 Gotoleep
Decision trees v% \>
* Including the boosted decision tree (BDT), random forest Go to restaurant Buy a hamburger

Support vector machines
A

- Semi-supervised learning (some training data required), e.g.:

Autoencoders for anomaly detection ‘\. O
- Unsupervised learning (no training data required) e.g.: A

K Nearest Neighbour (KNN) clustering - L] ' m’;%’,“\n“m
- Reinforcement learning (data delayed) = X
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Basics of supervised learning

* Most HEP use cases revolve around supervised learning

«  Access to lots of labelled data (MC simulation)

*  Want to build a model with good predictive power without overfitting to
the training data,
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Hyperparameter optimisation

Usually lots of parameters associated with machine learning models
e.g. tree depth, min leaf size for BDT

- Known as ‘hyperparameters’ and typically require tuning to a
particular problem and dataset

+ Can lead to tuning towards a test set, i.e. information leakage

*  Good practise to maintain an extra validation set to avoid biasing your
test scores after hyperparameter optimisation

Model training Final test

Training data Testing Data Validation Data

‘ Hyperparameter tuning\

Suite of dedicated algorithms to search through hyperparameter space

Grid search, bayesian optimisation, particle swarm
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Neural networks basics

« Build a network of nodes with features

of data as input and N nodes for output
(where N is task dependent)

- Between them have an array of neurons
arranged into layers with a configurable  *~

width

» Can approximate any function

Input

Neural network

Hidden

Output
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Useful activation functions

*  For the internal neurons:

Activation Functlons

* Traditionally use sigmoid or tanh SlngId

*  Now recommended to use ReLU or Leaky Rel U

tanh
* For the output neurons: tanh(z

. . . o max (0, x)
*  One output node with, typically, a linear activation

function (i.e. return the raw sum)

. . . Leaky ReLU
* Binary classification max(0.1z, z)

*  Regression ReLU /

*  One output node with a sigmoid activation function

(y<0.5 is first class, y>0.5 is second class) vaxout

max(w{ x + by, wd x + by)

x>0

* N nodes with a soft-max activation function (a -1) 2<0 -—/

series of sigmoids that all must add up to one)

* N class classification ELU
e 1
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Loss functions

» Define loss (error, cost, objective) functions to quantify how well the
network predictions, Y, models the real value from the data, y

» These loss functions typically signify the total error in the
representation and training the network revolves around minimising

the loss function

* The appropriate function depends on the use case:

For regression typically use mean squared error

1 < A
MSE = — ) (V; - Y;)°.
- ;( )
For classification typically use cross entropy (equivalent to minimising negative

log likelihood) 1
C=—— Iny + (1 —y)In(1 -y)],

- Z [yIng + (1 — ) In(1 - )]
Allows interpretation sigmoid or softmax output as probability of class

Many others available for more specific use cases
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Network optimisation

- To optimise the network want to choose the set of weights and
biases that minimise the loss function (or ‘error’)

+ Can carry out a gradient descent in the weight and bias parameter
space

+ E.g.a 2D optimisation in a one neuron network:

Error Surface

Error

A. Elwood - DESY
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Backpropagation

+ To carry out the gradient descent need to know the gradient of the loss function with
respect to the weights and biases in the network

- To find this we calculate how a change in the loss propagates backwards into changes in
the weights and biases of the network with the chain rule

d (l41)

' (error term of the output layer)

—J(W) =a,"
r)\'."‘l" ’

(compute gradient) 53 =aB® —y

r_"ﬁ

\output y <= target y
> "l O

()g(z(?-))
dz2)
(error term of the hidden layer)

O
oux ()
O

[ @4
A

5@ = (W(Z))Ts(z) .

- Backpropagation is actually a special version of a computational technique known as
“automatic differentiation”
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Methods of gradient descent

+  With the basic tools in place it is desirable to speed up the process of
gradient descent and find ways to escape local minima

» Can choose number of events, the ‘batch’, used to calculate each gradient
step

Using a subset of events gives fluctuations that can help escape local minima
Ultimately a tradeoff between accuracy and speed of each step

This gives you a basic algorithm ‘Stochastic Gradient Descent’

+ Different algorithms to follow the descent

Have to choose the size of the steps in the gradient (the ‘learning rate’), trade off
between overstepping and going too slowly

Can use tricks to speed up the process, such as stepping further when travelling in the
same direction for a lot of iterations, ‘momentum?’, and correcting for over steps
‘Nesterov accelerated gradient (NAG)’

This leads to new algorithms such as ‘Adam’ that exploit these techniques to speed
up training time

More detail: https://towardsdatascience.com/types-of-optimization-algorithms-
A.Elwood - DESY used-in-neural-networks-and-ways-to-optimize-gradient-95ae5d39529f 12
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Methods of gradient descent

NN e
\\? e S\G D\ :
| — Momentum [
~— NAG
— Adagrad |
= Adadelta
— — Rmsprop

More detail: https://towardsdatascience.com/types-of-optimization-algorithms-
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Training neural networks

» After choosing a batch size and optimiser you can train the network
Default batch size in lots of libraries is 32, often stick to powers of 2 for hardware optimisation

Adam, with the default parameters, works well in most cases

- Carry out the gradient descent, updating the gradient until a persistent minimum is
reached

Batches of events are randomly picked from the test data, taking events out of the pool for
subsequent batches

When all the events in the test set have been sampled, one ‘epoch’ of training is complete

overtraining

loss

validation set

training set

>
epochs | 4
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Other considerations

» A suite of other techniques and considerations
exist to solve problems such as overtraining and
disappearing gradients, e.g.:

Dropout

Standardise the inputs to have mean 0 and variance |
LI and L2 regularisation

Prevent the weights becoming too large by putting a
penalty on the loss function for large network
weights

Dropout regularisation

Prevent overtraining by removing a subset of nodes
in each training step

Tweaking weight and bias initialisation

Batch normalisation

» Can ultimately treat all these things as
hyperparameters to optimise

A. Elwood - DESY |5



Different architectures

» Many architectures are
available that determine the
connection of different nodes

+ Most basic is the dense (feed
forward) neural network
where every node is
connected to every other
node in the next layer

* In practise the big gains from
neural networks occur when
appropriate architecture is
chosen to take account of a
structure and symmetry in the
data

«  Dense neural networks aren’t a
magic bullet....

A. Elwood - DESY
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Convolutional neural networks

« Many tasks have a translationally invariant input

- Image recognition based on pixels as input

+ Convolutional networks scan filters with learnable parameters over
the input, allowing them to learn translational invariant features

Input Filter Feature Map
—>
9 5 1 |4 -3 — >
2 6 11 |-4 O 0O 0 O 6 11 O
3 1 8 |-10 8 X o 1 o — l 1 8 0
2 7 -3 -1 7 0O 0 o T 7 0 O

I |
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Convolutional neural networks

Applied to a full 2x2 image with 3 colours:

iInput output
A . feature maps

4 ’r\

Example features that could be learned:

edge horizontal edge  diagonal edge
- -1 -1 | =1 -1 -1 ~12
-1 8 -1 222 -1 2 -1
-1 =1 =1 -1 =1 =1 2 -1 -1

A. Elwood - DESY https://indico.scc.kit.edu/event/344/contributions/2426/attachments/1249/1750/Tutorial_ HAP_Workshop_Partl.pdf | 8



Convolutional neural networks

» After features are learned often perform ‘pooling’, e.g. just taking the
maximum value in an area

* Note the use of Ix| convolutional filters to expand or compress
feature space

*  Example of a complete convolutional network for classification:

pooled Fully-connected 1

feature maps pooled  featuremaps foatyre maps

s

ply|x)

{r

0000000
00

Outputs
Input

Convolutional Pooling 1 Convolutional

Pooling 2

A. Elwood - DESY https://indico.scc.kit.edu/event/344/contributions/2426/attachments/1249/1750/Tutorial_ HAP_Workshop_Partl.pdf |9



Recurrent neural networks

*  RNNs are useful when the inputs have a sequential structure
Natural language processing

Ordered particle list (e.g. by pr)

*  RNN neurons have an internal state that remembers previous data passing through
them

- Long Short Term Memory networks (LSTMs) are a popular variety of RNNs that can
learn long term dependencies better than vanilla RNNs

0
O O 1 0, 0,
1% N v VT
‘M st 1 St S 1
C PN SHNG (Mg (LEIN
N
Unfold w | w

U U U U

X x X X

A. Elwood - DESY http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part- | -introduction-to-rnns/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Generative adversarial networks (GANSs)

+ Relatively new development in neural networks shows great potential for
randomly generating realistic looking samples (e.g. images)

» Train two networks concurrently, a generator that tries to make fake samples
and a discriminator that tries to tell the difference

Real
Samples

] —

Latent
Space
s, | ‘ D Is D
B L Correct?
o & Discriminator
A
- G ;
e Generated :
‘ . - Samples :
—— : Fine Tune Training
t‘ ........................................................................................

Noise
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Software

* In recent years industry has driven a big
development in data analysis software

* In particular very powerful and flexible
tools for data visualisation and machine
learning based around python

* Machine learning:
Scikit learn
TMVA - a bit behind but catching up
* Neural networks specifically:
Tensorflow
Keras is a very convenient wrapper for this

Pytorch

A. Elwood - DESY
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Attempts to look inside the black box

Explanation

Image Class'3' Class'9'

LRP

Layer-wise relevance conservation

l l
ZiRi:--':ZiRE):ZjR§'+1):"':f($)
01831 + 4+
2~
14 0.136 -
x 01 S
=1- 0.090 A +
-2 -
0.043 - ' 1- +
K oF GF

T(z,y) = f(a,b) + (z — a)fz(a,b) + (y — b)fy(a,b) + %((x — a)® fzz(a,b) + 2(z — a)(y — b) fey(@,b) + (v — b)® fin (a, b)) PR
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Application of advanced ML techniques in
HEP

- Object reconstruction
Obvious place to use it, lots of low level correlated variables

Significant success in using DNNs for jet tagging (Deep)et)

* Generating simulation quickly
GANs are promising although need work to accurately reproduce statistics
Can minimise full detector simulation and significantly speed up generation
*  Physics analysis
Most obvious use is in classification Signal vs Background

DNNs are well suited to non-binary classification and accounting for complex
correlations

Can classify events based on their particular process

A. Elwood - DESY 24



Deepjet
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Global variables (6 features)
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b-jet efficiency

10

b-jet efficiency

M. Verzetti (CERN and FWQO)

https://indico.cern.ch/event/668017/contributions/2947023/attachments/1628927/2595479/IML_2018.pdf
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Use in searches

» Can gain beyond high level variables with DNN:s:

Background Rejection

I | l l |
1 m“’.'.’???ffr_'f"'oo,,, B
0.8 h -
0.6 N
....... DN lo+hi-level {AUC=0.88)
0.4 .
------- DN lo-level (AUC=0.88)
0.2 7
------- DN hi-level (AUC=0.80)
oF T
1 | | 1 l
0 0.2 0.4 0.6 0.8 1

Signal efficiency

» Latest CMS ttH result has made good use of DNNs

A. Elwood - DESY

https://arxiv.org/pdf/1402.4735.pdf
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Too much reliance on simulation?

* ldeas to remove systematics introduced by training on simulation:

*  Only use input variables with good MC/Data agreement * (but take care of

correlations)!?

*  Train purely on data, one sample signal enriched and one background enriched!?

S

*  Train an adversarial network that penalises differentiation between data and

MC? ek \
& G2 EEY [l

(”
B
backprop |||| e ]ll o derivative

{ ll'.‘u'.'.lcl{ wap

g (10N

True Positive Rate

|

1.0

0.6

0.4

'

v
0.0

—— Weakly supervised NN, AUC=0.93 _ |
— Fully supervised NN, AUC=0.93
Feature 1, auc=0.77
Feature 2, auc=0.70
- Feature 3, auc=0.78
Feature 4, auc=0.78

- -~ Feature 5, auc=0.71
| |

0.0

0.2

0.4 0.6 0.8
False Positive Rate

* https://indico.cern.ch/event/64680 | /contributions/265 101 4/attachments/1487701/2311252/6Jul2017_CMSML_ systematics.pdf

A.Elwood - DESY . http://arxiv.org/abs/1702.004 14 *** http://jmlr.org/papers/volume|7/15-239/15-239.pdf , https://arxiv.org/abs/1702.05464
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Directly optimising the
discovery significance

Based on work by Adam Elwood and Dirk Krucker
Paper coming soon

adam.elwood(@desy.de 28
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A HEP search approach

» Typical machine learning approach is to optimise classification
accuracy or area under ROC curve

All classes are effectively given the same weight

*  When searching for new physics actually care about significance of
signal counts over background counts

Don’t care about the purity of the background classification

Can we design a new loss function to directly optimise this!?

Standard approach HEP approach

s background
B = signal

Background Signal Background Signal
A. Elwood - DESY prediction  prediction prediction  prediction
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New optimisation scheme for neural
networks

*  We can design a loss function based around the direct optimisation of
the significance

For a batch of training events:
s=(N correctly classified signal events)
b=(N incorrectly classified background events)

Maximise standard estimate of exclusion significance based on gaussian statistical

uncertainties:
s/v\/s+b

Maximise Asimov estimate of discovery significance (including systematic):
Za=|2|(s+b)In (s + 0)(b + 03) x In |1+ %8 . %
ATV b2 + (s +bjoZ | o2 b(b + 02) |

A. Elwood - DESY % arXiv:1007.1727v3 30




Differentiability of loss functions

To be able to carry out a gradient descent with backpropagation the loss function
must be differentiable

With the naive definition of s and b a reclassification of an event produces a
discrete jump in the significance, it isn’t differentiable!

Must define a continuous transition from b to s

true

For truth level, y; ", define as 0 for background event and | for signal event

Output neuron activation function

]Vbatch

o pred true
s = W, g Y Xy,
)

[Vbatch

red rue
b= W, Z yi x (1 =y,

0
-10 10

Neuron value

t t
A. Elwood - DESY Ws = Losignat€/Ngignai, ~ Wb = LObkgd€/Npjgq:



Definition of loss functions

» Standard loss function to maximise accuracy or ROC score

Binary cross entropy:

1
C = —;gblnaﬂl—y)ln(l — a)],

*  New loss functions with definition of s and b from above:
They must be inverted to frame as a minimisation problem

Neglecting the square root to reduce expensive computations

gs/\/s—}—b — (S + b)/82

gAsimov — 1/ZA

A. Elwood - DESY
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Testing with a toy SUSY scenario

To test this approach look at two mass points for the T2tt SUSY model that
are on the edge of exclusion at 30/fb of |3 TeV LHC data

Uncompressed: msop= 900 GeV, misp= 100 GeV
Compressed: msop= 600 GeV, mysp = 400 GeV

Consider ttbar as the background

Generate |M events of signal and background with Pythia and Delphes after
passing a basic selection criteria

| lepton pT>40 GeV, 4 jets pI>30 GeV, | b-tagged jet

Consider the scenario with different systematics on the background from
0-50%

A. Elwood - DESY 33



Batch size dependence

+  With standard loss functions the loss is defined per event
* The loss for a batch is just an average of the losses for each individual event
* For cross entropy find a batch of 128 works well

» For the new loss functions the loss is defined per batch

*  When b is low, statistical fluctuations can effect the accuracy of the significance estimation

* Find a batch of 4096 reaches compromise

' b>2 20000 -
5 [ - b=0
’ gf; 17500 -
m - =
&)
e 4+ - 15000 -
©
& 12500
[ o
C 34 o
o) S
'» O 10000 -
9, O
2 41 7500 -
E
— ] 4 5000 4
7
(W
2500 -
0 .
L} T L} 1 1 LS 0 L] LJ 1
0 2000 4000 6000 8000 10000 0 1 2 3 4 5
Batch size Estimated significance

A. Elwood - DESY
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Issues with small gradients

When s is small relative to the systematic uncertainty on b the gradient of the
Asimoyv significance with respect to s is small

Gradient descent fails when initialising the network and training with the Asimov loss

Pretraining with fs/\/m solves the problem, 5 epochs is typically enough

Significance Gradient of significance
5 s+b=4096 5 s+b=4096
200 A .
— s/sqrt(s+b) N s/sqrt(s+b)
175 - asimov, syst 0.1 10 - asimov, syst 0.1
150 A
10° 4
125 - ]
100 -
1071 4
75 A 3
50 -
1072 4
25 - 3
O -
6 10100 20'00 30100 40'00 6 10'00 20'00 30100 40'00
S S
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Training

- Tested with various dense neural networks: |, 3 and 5

hidden layers

Input features

low level | high level
» Results shown with a | layer, 23 neuron network D mr
. : : 5. , W
1.4 M training events, 0.6 M testing events (equally split Pjet(1,2,3) Mo
between signal and background) M jet 74\
. Nb jet Hr
+ Normalised to 30/fb of 14 TeV LHC data
55/@ gs/m
- train 08004 — train
101: test test
0.775 A
0.750 1
; /
N v 0.725
° O
10° 4 ©
] 0.700 A
0.675 - Dl el
A
&
—— 0.650 4 =
_— P
107! T : : T r : Y T T
0 10 20 30 40 50 0 10 20 30 40 50
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Results: classifier outputs

» Carry out training on the compressed model with a 50% background
systematic for the Asimov training

* Plot the value of the output neuron

» Can see clear difference between the different approaches

*  New loss functions throw away signal events

* Asimov loss retains very high purity due to the high systematic
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Classifier output Classifier output Classifier output
(a) Binary cross entropy (b) £,/ /s75 (c) Lasimov
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Results: predicted significances

+ To have a fair comparison of performance find the optimal cut on the
classifier score to obtain the highest significance

« Again compressed model with a 50% uncertainty for the Asimov estimate

+  Going deep into the tail of the BCE does surprisingly well

- Interpretable as a probability, so can go to very high probability of a signal event

- The awareness of the systematic in the Asimov training allows it to perform

best
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Statistically dominated case

+ The above procedure is carried out for a series of systematic
uncertainties for all three loss functions

+ The uncompressed model is in a regime dominated by statistical
uncertainties

Low signal and background event counts

* All loss functions perform similarly as there is no gain in knowing
about systematic uncertainty

Za(op/b=0.1) Za(op/b=0.3) Za(op/b=0.5)
Loss
S b o S b o S b o

Uncompressed model, mg,, = 900 GeV, mpgp = 100 GeV

Cross entropy 8.7 1.7 45403 7.7 1.2 4.0 £0.3 7.7 1.2 3.0 £0.3

by /5Th 77 13 43+03 77 13 39403 7.7 13 3.440.3
0 hsinon 66 1.6 36402 35 01 40+05 33 0.1 42+0.7
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Systematically dominated case

* The compressed model is in a regime dominated by systematic
uncertainties

Low signal and background event counts

* The training with £,/ ;73 performs poorly as there is no flexibility to
adapt based on the systematic

»  The Asimov training starts to outperform the cross entropy at high

systematics
Z.f"l(ab/b — 01) Z.f"l((fb/b - 03) Z‘-»"\(O-b/b — 05)
Loss
S b o S b o S b o
Compressed model, mg,, = 600 GeV, mpgp = 400 GeV
Cross entropy 74.4 18.2 10.7+0.3 44.0 7.7 6.84+0.3 40.5 6.8 4.8 +0.3
(’"S/m 323 326 T7.0+£0.1 323 326 2.56+0.03 324 327 1.55+0.02
U Asimou 78.4 194 10.8+=0.3 259 3.2 6.84+04 11.9 0.5 6.2 +0.6
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Conclusions

* Two new loss functions that aim to directly maximise the discovery
significance instead of the correct classification of signal and
background are presented

» They are tested in the context of a search for SUSY

* In the case that there are large systematic uncertainties on the
background £ Asimov can outperform the binary cross entropy

* Paper detailing the results to be put on the arXiv soon

« Code for the work available on GitHub

github.com/aelwood/hepML

Includes implementation of networks and loss functions with Keras

A. Elwood - DESY

4]


http://github.com/aelwood/hepML

sSummary

*  With more and more development of sophisticated machine learning
algorithms from computer science and industry HEP can gain a lot

* Neural networks are very promising
Lots of areas being investigated for application to HEP

Although don’t neglect the BDT... most Kaggle competitions are won with
XGBoost somewhere in the mix

- Still a very open area of research

- New optimisation techniques could help us get on our way to maybe
finally discovering SUSY....

A. Elwood - DESY 4)



Potential and dangers...

5,000+
4,000 -
3,000 -

Deep Neural Networks with

(@] . .

£ 5 .000. 2 the right architecture can do

= ©

g 1.000- E this. ..

0-
— AlphaGo Zero 40 block
-1,000- A|gh:Gg Mea:gter e https://www.nature.com/articles/nature24270

--- AlphaGo Lee

-2,000.-

0 5 10 15 20 25 30 35 40
Days

Classifier Output

But we need to make sure
they aren’t doing things like
this...

https://arxiv.org/pdf/ 1 712.09665.pdf

slug snail orange

Classifier Output

A. Elwood - DESY e S

piggy_bank spaghetti_
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Backup

Compact Muon Solenoid

THIS 1S YOUR MACHINE (EARNING SYSTEM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSWERS ON THE OTHER SIDE.

WHAT IF THE ANSIERS ARE LIRONG? )

JUST STIR THE PILE DNTIL
THEY START LOOKING RIGHT.

adam.elwood(@desy.de https://xkcd.com/ 1838/
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References and useful links

https://github.com/iml-wg/HEP-ML-Resources#people

nttps://indico.cern.ch/event/6193/0/attachments/1449641/2235734/
Kagan Lecturel.pdf

nttps://sebastianraschka.com/fag/docs/visual-backpropagation.html

A. Elwood - DESY
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A word on ML scepticism

» Think of it as a high level variable -

not just a black box THIS 15 YOUR MACHINE (EARNING SYSTET?
, YUP! YOU POUR THE DATA INTO THIS BIG
- Something that takes account of PILE OF LINEAR ALGEBRA, THEN COLLECT
correlations better than a THE- ANSLERS ON THE: OTHER SIDE.
‘ o JUST STIR THE PILE. UNTIL
» The early data regime’ has ended, THEY START LOOKING RIGHT.

conservative cut based analyses
aren’t as interesting anymore

+ Lots of work is going into looking
inside the ML black boxes and
understanding why they work

* In the future these techniques will
be used throughout HEP, now is the

right time to start developing and
understanding where they are useful https://xked.com/|838/

A. Elwood - DESY * hetps://arxiv.org/pdf/1402.4735.pdf 46
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How we can use the software in a generic
analysis

ROOT is still very good at some things
Complex event level calculations

Fast and sophisticated event loops

Not always ideal for the final stage of the analysis

Central Private (e.g. Heppy) root_numpy Plotting

Data
Frames

MiniAOD

Machine

pandas learning

sklearn
keras

seaborn

B =rooT

. = numpy/pandas

BN - A0D

Statistical
fitting

Root

Analysis
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Software developed for ML with new tools

*  Developing software exploiting the modern data analysis python
libraries (based around numpy)

* Installation setup independent of CMSSW and working on NAF but
portable to most computer systems

Easy recipe with anaconda available that includes root (standalone installation)

»  Check out and contribute to from https://github.com/aelwood/hepML

pandas/

Plotting Seaborn

root_numpy matplotlib

Visualisation

Flat trees

Machine Generic Generic
learning BN BDT

pandas "
sklearn |
keras Produce ﬁfutomi.tm
iagnhostics
seaborn GRAM . g )

A. Elwood - DESY matrix
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