# VXD Alignment from first collisions

Tadeas Bilka

Weekly Tracking Meeting, 4th May 2018

## The Data Set

- Runs 521 532 (luminosity runs)
- Events with RecoTracks with > 3 VXD hits
  - Just anything charged going through VXD used
  - I suspect many tracks come from the hot-spots
    - Could be a good think, but...
    - No ideas about systematics, we do not have anything like this on MC:-)
  - Note: the sample is mostly IP tracks (I reused scripts for beam alignment) but those usually go only through CDC if no VXD hits, they do not contribute to the alignment
  - About 2k VXD tracks

## Reconstruction

- Master branch
- Global Tag #332
- Standard reconstruction (VXDTF2)
  - SVDSpacePointCreator.MinClusterTime=-999
  - PXD + SVD + CDC, DAF
  - CDC is used as external reference
- Wanted to show also DQM plots with tracks, but scales are too small to see all features

## Results

- U, V residuals from standard reconstruction
  - PXD + SVD + CDC, DAF
- Set of drawings/plots:
  - VXDAlignment payload content
  - U residuals
  - V residuals
- First set using GCR2 alignment from cosmics
  - /home/belle2/bilka/GCR2VXDAlignment\_init/database.txt
- Second set using computed alignment from collisions

#### layer 6 ladder 1

| u = -32.34718  um                | <i>u</i> = -59.1628 um           | <i>u</i> = 122.47315 um          | <i>u</i> = 285.2872 um           | <i>u</i> = 611.89884 un         |
|----------------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------------------|
| v = 1201.0189  um                | v = 1379.0202 um                 | v = 1381.2395 um                 | v = 1373.405 um                  | v = 1385.972 um                 |
| w = 729.60785  um                | w = -91.62963  um                | w = -91.47742  um                | w = -275.07736 um                | w = -93.19213  um               |
| $\alpha = -2.43835 \text{ mrad}$ | $\alpha = 1.82428 \text{ mrad}$  | $\alpha = -2.49197 \text{ mrad}$ | $\alpha = -0.11543 \text{ mrad}$ | $\alpha = 2.76449 \text{ mrad}$ |
| $\beta = 6.94594 \text{ mrad}$   | $\beta = 9.32705 \text{ mrad}$   | $\beta = 3.78779 \text{ mrad}$   | $\beta = -0.15664 \text{ mrad}$  | $\beta = -5.18588 \text{ mrad}$ |
| $\gamma = 2.61673 \text{ mrad}$  | $\gamma = -1.25469 \text{ mrad}$ | $\gamma = -1.47513 \text{ mrad}$ | $\gamma = -1.33904 \text{ mrad}$ | $\gamma = 0.0337 \text{ mrad}$  |
|                                  |                                  |                                  |                                  |                                 |

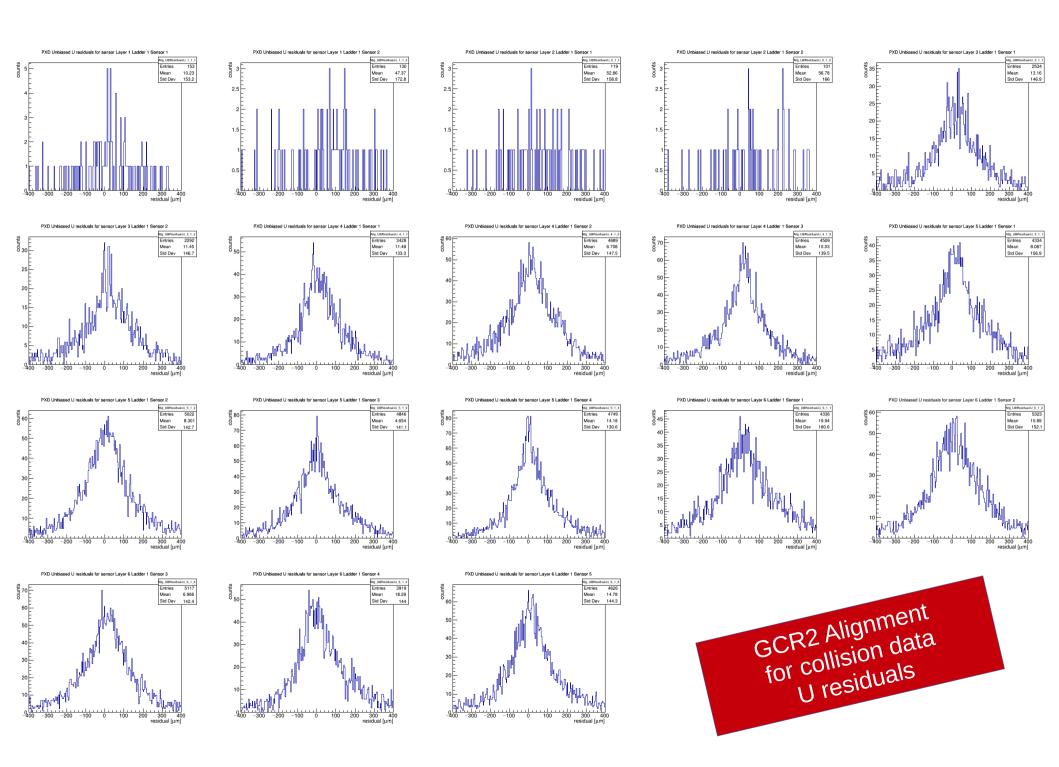
#### layer 5 ladder 1

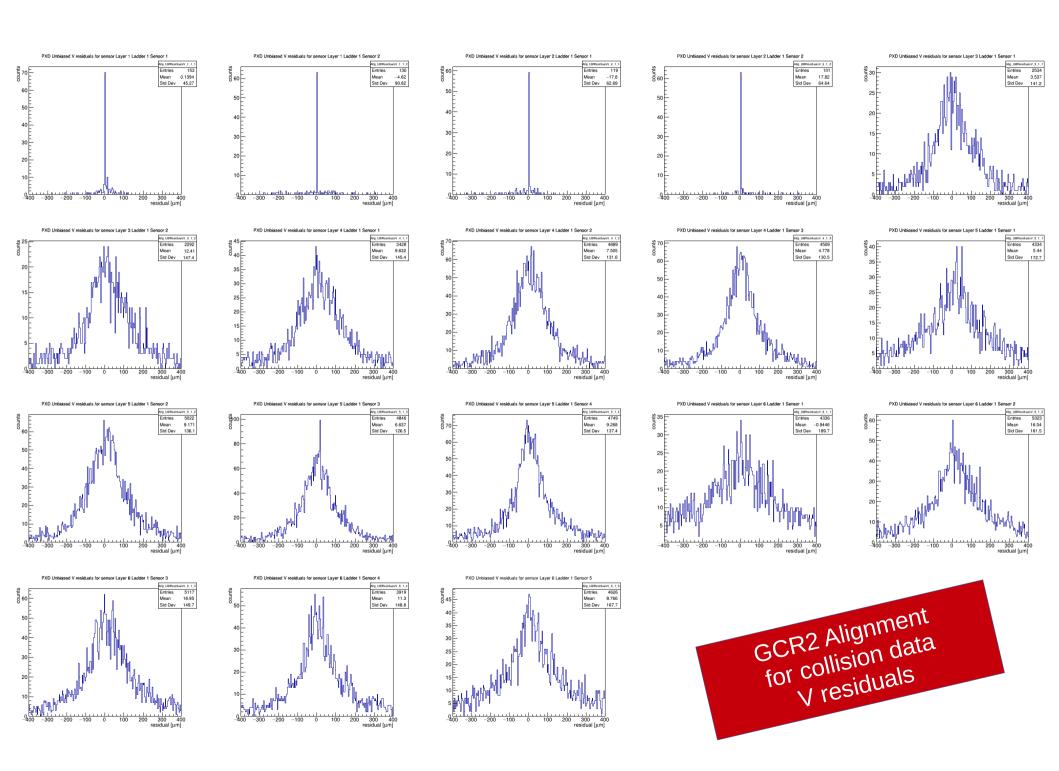
| <i>u</i> = -210.22667 um         | <i>u</i> = -70.71388 um          | <i>u</i> = 231.51287 um          | <i>u</i> = 602.87982 um          |
|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| v = 1273.5856 um                 | v = 1457.234 um                  | v = 1476.556 um                  | v = 1427.5199 um                 |
| w = 497.5932  um                 | w = -210.98747 um                | w = -377.42838  um               | w = -40.33378  um                |
| $\alpha = -1.89397 \text{ mrad}$ | $\alpha = -4.35395 \text{ mrad}$ | $\alpha = 0.80789 \text{ mrad}$  | $\alpha = 4.16214 \text{ mrad}$  |
| $\beta = 7.34429 \text{ mrad}$   | $\beta = 10.47483 \text{ mrad}$  | $\beta = 5.38889 \text{ mrad}$   | $\beta = 0.40486 \text{ mrad}$   |
| $\gamma = 2.74029 \text{ mrad}$  | γ = -2.78208 mrad                | $\gamma = -2.10782 \text{ mrad}$ | $\gamma = -1.34366 \text{ mrad}$ |
|                                  | •                                |                                  |                                  |

#### layer 4 ladder 1

| u = 78.66829  um                | <i>u</i> = 471.52095 um          | <i>u</i> = 649.57118 um         |
|---------------------------------|----------------------------------|---------------------------------|
| v = 1198.0864  um               | v = 1349.176 um                  | v = 1289.788 um                 |
| w = 697.3752  um                | w = 161.0224  um                 | w = 293.98554  um               |
| $\alpha = 1.67512 \text{ mrad}$ | $\alpha = -2.96467 \text{ mrad}$ | $\alpha = 2.64059 \text{ mrad}$ |
| $\beta = 4.42185 \text{ mrad}$  | eta= -1.51546 mrad               | $\beta = -3.79422 \text{ mrad}$ |
| $\gamma = 0.29257 \text{ mrad}$ | $\gamma$ = -1.56181 mrad         | $\gamma$ = -1.3923 mrad         |
|                                 |                                  |                                 |

#### layer 3 ladder 1


| $u = 378.95534 \text{ um}$ $\alpha = -0.27123 \text{ mrad}$ | $u = 643.58986 \text{ um}$ $\alpha = -0.11714 \text{ mrad}$ |
|-------------------------------------------------------------|-------------------------------------------------------------|
| $v = 1479.756 \text{ um}$ $\beta = 4.4605 \text{ mrad}$     | $v = 1471.9244 \text{ um}$ $\beta = -1.74195 \text{ mrad}$  |
| $w = 113.21934 \text{ um}$ $\gamma = -1.85214 \text{ mrad}$ | $w = 91.51538 \text{ um}$ $\gamma = -1.45636 \text{ mrad}$  |


#### layer 2 ladder 1

| $\alpha = 1.07289 \text{ mrad}$                             | $\alpha = 1.08852 \text{ mrad}$                            |
|-------------------------------------------------------------|------------------------------------------------------------|
| $v = 2155.086 \text{ um}$ $\beta = -0.236 \text{ mrad}$     | $v = 1816.409 \text{ um}$ $\beta = -8.24308 \text{ mrad}$  |
| $w = -68.8197 \text{ um}$ $\gamma = -16.24299 \text{ mrad}$ | $w = -80.1334 \text{ um}$ $\gamma = 10.35166 \text{ mrad}$ |

#### layer 1 ladder 1

GCR2 Alignment Payload content





#### layer 6 ladder 1

| u = -4.34918  um<br>v = 1046.9279  um<br>w = 704.03985  um<br>$\alpha = -4.84061 \text{ mrad}$<br>$\beta = 2.42327 \text{ mrad}$<br>$\gamma = 2.85472 \text{ mrad}$ | u = 136.42895  um<br>v = 1431.0185  um<br>w = 121.30378  um<br>$\alpha = -1.68932 \text{ mrad}$<br>$\beta = 8.64943 \text{ mrad}$<br>$\alpha = -1.38374 \text{ mrad}$ | u = 311.5788  um<br>v = 1387.232  um<br>w = 89.32574  um<br>$\alpha = -0.76658 \text{ mrad}$<br>$\beta = 2.29149 \text{ mrad}$<br>$\alpha = -1.49464 \text{ mrad}$ | u = 654.37054  ur<br>v = 1325.956  um<br>w = 81.46937  um<br>$\alpha = -0.20989 \text{ mrad}$<br>$\beta = 0.74706 \text{ mrad}$<br>$\gamma = -0.16583 \text{ mrad}$ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|

#### layer 5 ladder 1

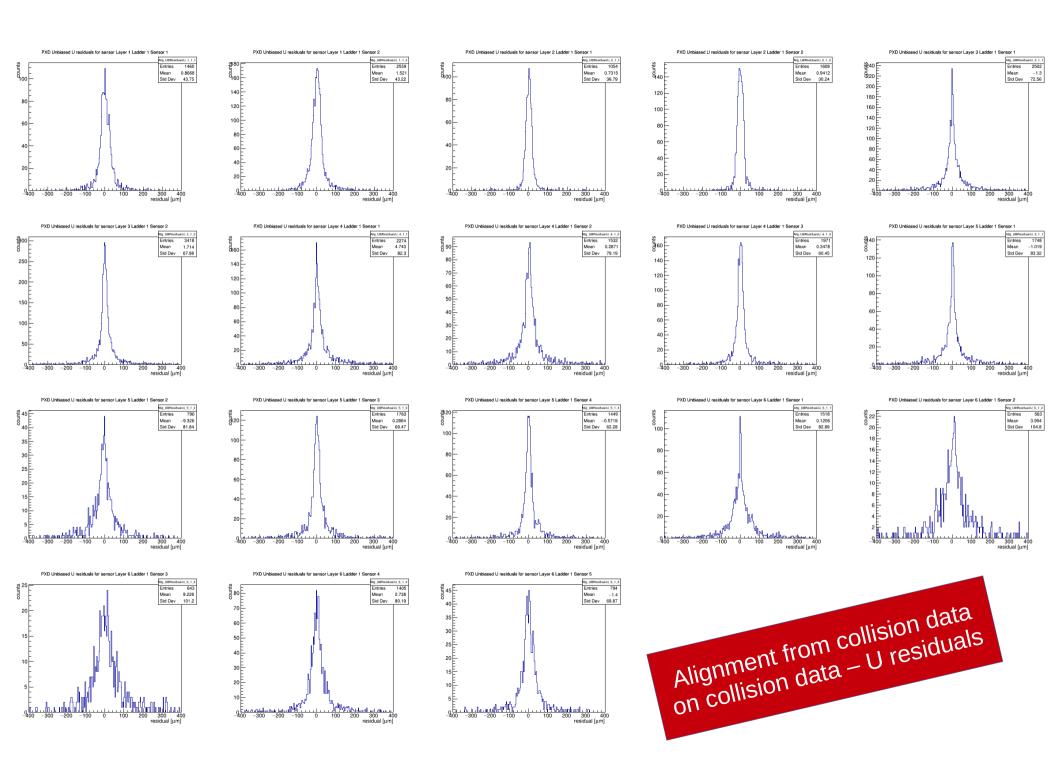
| u = -172.99837  um               | u = -61.87318  um                | <i>u</i> = 259.11277 um         | <i>u</i> = 642.88932 um          |
|----------------------------------|----------------------------------|---------------------------------|----------------------------------|
| v = 1001.7106  um                | v = 1481.808 um                  | v = 1511.667 um                 | v = 1461.3939 um                 |
| w = 490.4122  um                 | w = -67.62527  um                | w = -68.37548  um               | w = 117.13722 um                 |
| $\alpha = -4.27649 \text{ mrad}$ | $\alpha = -5.08138 \text{ mrad}$ | $\alpha = 2.2043 \text{ mrad}$  | $\alpha = 1.09933 \text{ mrad}$  |
| $\beta = 6.96077 \text{ mrad}$   | $\beta = 11.70694 \text{ mrad}$  | $\beta = 5.77772 \text{ mrad}$  | $\beta = 3.83877 \text{ mrad}$   |
| $\gamma = 2.95413 \text{ mrad}$  | $\gamma = -2.75858 \text{ mrad}$ | $\gamma = -2.2851 \text{ mrad}$ | $\gamma = -1.51593 \text{ mrad}$ |

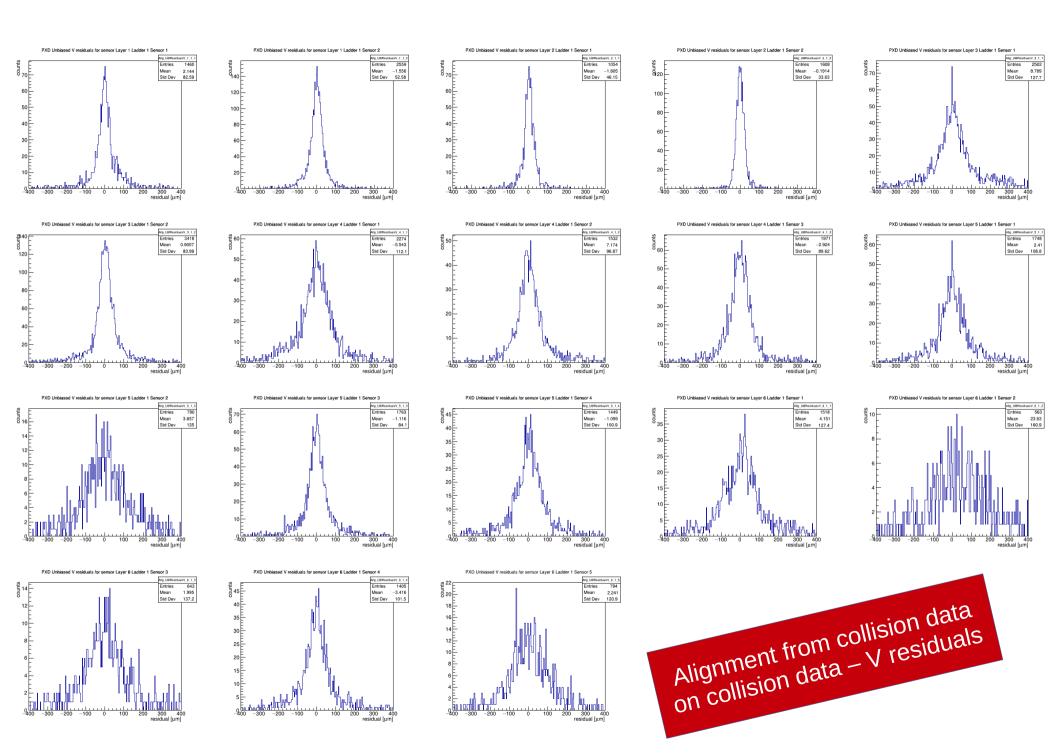
#### layer 4 ladder 1

| u = 138.52709  um               | <i>u</i> = 506.07306 um          | u = 692.97678  um                |
|---------------------------------|----------------------------------|----------------------------------|
| v = 1010.1974  um               | v = 1418.477 um                  | v = 1361.044 um                  |
| w = 742.675  um                 | <i>w</i> = 385.0448 um           | w = 454.76654 um                 |
| $\alpha = 0.79538 \text{ mrad}$ | $\alpha = -0.46819 \text{ mrad}$ | $\alpha = 0.69029 \text{ mrad}$  |
| $\beta = -1.19958 \text{ mrad}$ | $\beta = -0.93372 \text{ mrad}$  | $\beta = -1.64907 \text{ mrad}$  |
| $\gamma = 0.72706 \text{ mrad}$ | $\gamma$ = -1.61563 mrad         | $\gamma = -1.31721 \text{ mrad}$ |
|                                 |                                  |                                  |

#### layer 3 ladder 1

| $u = 442.36924 \text{ um}$ $\alpha = -0.83024 \text{ mrad}$ | $u = 702.36336 \text{ um}$ $\alpha = -1.47463 \text{ mrad}$ |
|-------------------------------------------------------------|-------------------------------------------------------------|
| $v = 1561.861 \text{ um}$ $\beta = 2.0391 \text{ mrad}$     | $v = 1555.3394 \text{ um}$ $\beta = -2.65391 \text{ mrad}$  |
| $w = 364.54434 \text{ um}$ $\gamma = -1.58169 \text{ mrad}$ | $w = 366.49898 \text{ um}$ $\gamma = -1.87602 \text{ mrad}$ |


#### layer 2 ladder 1


| $u = 1317.8714 \text{ um}$ $\alpha = 0.45302 \text{ mrad}$  | $u = 1163.3531 \text{ um}$ $\alpha = 0.10156 \text{ mrad}$ |
|-------------------------------------------------------------|------------------------------------------------------------|
| $v = 2581.377 \text{ um}$ $\beta = -11.3945 \text{ mrad}$   | $v = 2144.773 \text{ um}$ $\beta = -8.74658 \text{ mrad}$  |
| $w = 113.1393 \text{ um}$ $\gamma = -15.43234 \text{ mrad}$ | $w = 131.6313 \text{ um}$ $\gamma = 9.43878 \text{ mrad}$  |

#### layer 1 ladder 1

 $\begin{array}{c} u = 605.435 \text{ um} & \alpha = -1.43431 \text{ mrad} \\ \hline v = 2576.434 \text{ um} & \beta = -10.1762 \text{ mrad} \\ \hline w = -82.33036 \text{ um} & \gamma = -2.1086 \text{ mrad} \\ \hline \end{array} \qquad \begin{array}{c} u = 650.1355 \text{ um} & \alpha = 4.67683 \text{ mrad} \\ \hline v = 2092.916 \text{ um} & \beta = -11.42998 \text{ mrad} \\ \hline w = -164.10026 \text{ um} & \gamma = 0.69078 \text{ mrad} \\ \hline \end{array}$ 

Collision Alignment Payload content





# Alignment of Primary Beam Spot

- Runs 112 140
- Pre-selection of events
  - RecoTracks with
    - abs(d0) < 0.2 and abs(pt \* math.sqrt(1 + tanLambda^2)) > 4.0
- Reconstruct 2-track decays with beam+vertex constraint → Millepede
- Still using Phase 3 IP vertex covariance
- CDC-only
- 96 CAF iterations
  - Phase3 beam size limits the iteration step (~200um per each iteration)
- Results:
  - x = -124 um + -1 um
  - v = 0.0 + 0.01 um
  - -z = 1.05 cm + -0.002 cm

# Summary / Conclusions / Plans

- We inherit systematics from CDC
  - Nothing can be done with that at this stage
- Some missing items
  - More collision data!
  - Checking the tracks sample
  - Try collision alignment on GCR2 cosmics data
  - Combine beam+cosmics data if consistency confirmed
- · Upload to GT's
  - I think this alignment should be sufficient for all initial tracking studies
  - N.B. the alignment will be updated again and again, probably even years after the experiment will finish! (but not by me I hope)
- Jakub will step in to produce/validate the alignment regularly
- More improvements with more data, mu-pairs ...
- What about uploading IP alignment to GT's?
  - Displaced beam spot not such a big problem for tracking
  - But analysis could suffer a lot (any beam+vertex constrained reconstructions)
  - Covariance should be updated to Phase 2 parameters (M. Ritter?)