Update on Lambda Finding Performance in Belle & Belle II $$\Lambda^0 \rightarrow p\pi^- \& \overline{\Lambda^0} \rightarrow \overline{p}\pi^+$$ Generated Continuum $c\bar{c}$ ~2500k Events Belle II Phase 3 on **release-01-01** (without background) Belle Generic $c\bar{c}$ mDST (with background) Selection ~200k events with exactly one Λ^0 (or $\overline{\Lambda^0}$) by vpho $\rightarrow \Lambda^0$ ($\overline{\Lambda^0}$) \rightarrow p[±] π^\pm Joseph T. McNeil University of Florida Dept. of Physics J. Yelton, I. Jaegle, & Y. Tao ### **Outline** - Analysis procedure on Belle and Belle II mDST - Integrated Results from previous talk on MCMatched, best candidates - Validated MCMatching by "Kinematic" Matching results - Efficiency distributions of candidates and tracks with respect to the flight length R and the track transverse momenta - Conclusions on the inefficiencies in Belle II #### Comparing Lambda Reconstructions and V0s in basf and basf2 - The **V0FinderModule** An mDST level module identifying V0 vertices with available track information correct energy loss without user extrapolation through material - The ParticleCombinerModule An Analysis level module combining all TrackFitResults from given ParticleLists to generate a new ParticleList (no information on material effects) - Belle Analysis - Generic $c\bar{c}$ Belle mDST is converted by the b2bii module - The new b2bii mDST is steered on analysis level through the LambdaEffModule selecting events with exactly one vpho $\rightarrow \Lambda^0 \rightarrow p\pi$ (**feature/Florida_LambdaV0** branch on GIT) - Belle II Analysis (release-01-01) - Generate Continuum $c\bar{c}$ for mDST in basf2 - The Belle II mDST is steered on analysis level through the LambdaEffModule selecting events with exactly one vpho $\rightarrow \Lambda^0 \rightarrow p\pi$ - All cuts made by the V0Finder in basf2 are removed, except rejectCandidate() used to reduce 'background' when generating mDST - By default, the V0Fitter removes V0 candidates produced inside the BeamPipe (R < 1.cm) and those V0s whose vertex χ^2 > 50. #### **Analysis Procedure on Belle and Belle II mDST** ``` #V0 mdst # reconstruct Lambda:V0 fillParticleList('Lambda0:V0','') vertexKFit('Lambda0:V0',-1.) looseMCTruth('Lambda0:V0') fillParticleList('pi-:std', '') fillParticleList('p+:std', '') looseMCTruth('pi-:std') looseMCTruth('p+:std') #reconstruct Lambda0:ppi reconstructDecay('Lambda0:ppi -> p+:std pi-:std', '') #vertexTree('Lambda0:ppi',-1.) vertexKFit('Lambda0:ppi',-1.) looseMCTruth('Lambda0:ppi') ``` - The analysis uses four ParticleLists (pi-:all, p+:all, Lambda0:V0, and Lambda0:ppi) with decay reconstructions vertexed using KFit on analysis level (CL = -1) - MCMatching and "Kinematic" Matching is applied and a <u>single</u>, best matched candidate per event is selected (based on p-value) due to multiple candidate matching during events - The results are fit to a Double Gaussian with a zero order Chebyshev polynomial background to determine the efficiency, resolution, and background fractions ### **INTEGRATED RESULTS** The efficiencies and resolutions are extracted from a fit to the best matched (per event) candidate with a Double Gaussian and flat Chebyshev polynomial background fraction #### Integrated Efficiencies, Resolutions, and Background After MCMatching | | Belle
Efficiency | Belle II
Efficiency | Belle
Resolution
(MeV) | Belle II
Resolution
(MeV) | Belle Bkgd
Fraction | Belle II
Bkgd
Fraction | |-------------|--|--|--|--|--|--| | pi-:all | 0.809 (0.807) | 0.721 (0.721) | | | | | | p+:all | 0.896 (0.961) | 0.877 (0.86) | | | | | | Lambda0:V0 | 0.57 +/- 0.0063 (0.57 +/- 0.0062) | 0.43 +/- 0.0031 (0.47 +/- 0.0039) | 1.17 +/-
0.018
(1.21 +/-
0.026) | 1.41 +/-
0.008
(1.32 +/-
0.026) | 0.096 +/- 0.0099 (0.108 +/- 0.0097) | 0.17 +/- 0.006 (0.15 +/- 0.007) | | Lambda0:ppi | 0.63 +/- 0.0094 (0.66 +/- 0.01) | 0.45 +/- 0.004 (0.48 +/- 0.0049) | 1.33 +/-
0.024
(1.35 +/-
0.036) | 1.45 +/-
0.013
(1.35 +/-
0.031) | 0.104 +/- 0.013 (0.114 +/- 0.013) | 0.20 +/- 0.007 (0.19 +/- 0.008) | Belle vs Belle II - Belle II inefficiencies are caused by the pion tracking efficiency (~9% higher efficiency in Belle) - At this momentum, Belle outperforms Belle II by >10% efficiency and ~0.2MeV resolution with half the background from matching #### **V0s vs Reconstructions** - Limited V0 mDST improvement to the resolution by ~0.035MeV in Belle II (~0.15MeV improvement in Belle) - Belle II VO's reduce the background by ~3-4% - The ParticleCombiner and V0Finder have nearly equivalent efficiency Effective resolutions defined as the weighted RMS: $$\sigma_{RMS} = \frac{\sqrt{w_1 \sigma_1^2 + w_2 \sigma_2}}{\sum w_i}$$ #### **Kinematic Matching** - Kinematic Matching is based on two degrees of freedom from the reconstructed values of p_T and p_T - δp_T , δp_z are calculated as the differences between the MC generated value and the reconstructed value of the transverse and parallel momenta - These discrete values for each candidate are compared to an expected value (RMS) found from the variable distribution over all MCMatched candidates (see bonus slides for distributions) - A discrete kinematic deviation value is then defined by least squares - $\delta \Lambda = \sqrt{\delta p_T^2/\delta p_{T,RMS}^2 + \delta p_z^2/\delta p_{z,RMS}^2}$ - Deviations are found for all particles: $\delta \Lambda$, $\delta \pi$, and δp - We restrict that $\delta\Lambda$, $\delta\pi$, and $\delta\rho$ be less than 5 for a good, "tight" matched lambda candidate - Allows an order of 5 per 2 degrees of freedom deviation - A "loose" kinematic match may require only $\delta\Lambda$ and $\delta\pi$ or $\delta\rho$ be less than 5 - Of these selected good, matched lambda candidates, the best candidate is selected based upon the highest vertex p-value and used for fitting #### Integrated Efficiencies, Resolutions, and Background After Kinematic Matching | | Belle
Efficiency | Belle II
Efficiency | Belle
Resolution
(MeV) | Belle II
Resolution
(MeV) | Belle Bkgd
Fraction | Belle II
Bkgd
Fraction | |-------------|--|--|--|--|--|--| | pi-:all | 0.627 (0.619) | 0.537 (0.573) | | | | | | p+:all | 0.819 (0.81) | 0.81 (0.794) | | | | | | Lambda0:V0 | 0.56 +/- 0.006 (0.55 +/- 0.006) | 0.44 +/- 0.003 (0.48 +/- 0.0043) | 1.16 +/-
0.016
(1.19 +/-
0.025) | 1.41 +/-
0.008
(1.3 +/-
0.03) | 0.088 +/- 0.01 (0.092 +/- 0.01) | 0.17 +/- 0.006 (0.16 +/- 0.008) | | Lambda0:ppi | 0.59 +/- 0.035 (0.58 +/- 0.009) | 0.45 +/- 0.0043 (0.49 +/- 0.0054) | 1.3 +/-
0.08
(1.34 +/-
0.04) | 1.45 +/-
0.01
(1.35 +/-
0.03) | 0.096 +/- 0.05 (0.094 +/- 0.01) | 0.20 +/- 0.008 (0.19 +/- 0.009) | ### MCMatching vs Kinematic Matching - Overall comparable to MCMatching, less efficient particularly in pion (and proton) track efficiency since tracks are <u>before vertexing</u>, without a lambda candidate - Approximately equal background to MCMatching, - Implying that fitting is required for both efficiency and resolution calculations - In Belle, the asymmetry due to low momentum protons is gone - Implying the high efficiency in low momentum proton tracks is due to the converted MCMatching relationship when using b2bii Effective resolutions defined as the weighted RMS: $$\sigma_{RMS} = \frac{\sqrt{w_1 \sigma_1^2 + w_2 \sigma_2}}{\sum w_i}$$ # RESOLUTION AND EFFICIENCY WITH RESPECT TO $R_{\Lambda0}$, P_T^{Π} , AND P_T^{P} The efficiencies and resolutions are extracted from a fit to the best matched (per event) candidate with a Double Gaussian and flat Chebyshev polynomial background fraction ### Efficiency and Resolution as a function of Flight Length R_{N0} from MCMatching Fits Belle II #### **Expected Lambda Efficiency (with background) vs R Distributions** Belle II - Results from divided TH1F classes on the Lambda0:V0 and Lambda0:ppi after selecting a single, best matched candidate - These distributions include an approximately uniform background, but comparable to fitting results - Loss of efficiency w.r.t. R is seen using the MCMatching and kinematic matching, kinematic matching validated ### MCMatched Track Efficiency (with background) as a function of Flight Length R_{Λ0} Belle II ### Efficiency and Resolution as a function of p_T^p from MCMatching Fits Belle II ### Track Efficiency (with background) as a function of p_T^p Belle II - Belle II is tracking higher momentum ($p_T > 300 \text{ MeV}$) protons with better efficiency, reaching a 90% efficiency threshold sooner than Belle - Belle does appear better in the low (p_T < 300MeV) range at finding MCMatched protons, but at least approximation Belle and Belle II preform comparably - Anti-proton efficiency asymmetry seen explicitly at low momentum (p_T < 300MeV) due to MCMatching converted in b2bii 14 ### Efficiency and Resolution as a function of p_T^{π} from MCMatching Belle II ### Track Efficiency (with background) as a function of p_T^{π} Belle II - Belle II reaches a 90% efficiency threshold near 150MeV, as opposed to Belle at ~100MeV - Belle II does not reach a comparable efficiency of MCMatched pion tracks until momentums higher than 300MeV - Belle II pion efficiency plateaus with apparent missing tracks between 125-250MeV ### **Conclusions** - To validate the MCMatching, the kinematic matching shows that the efficiency distributions and background fractions found from fitting are genuine when matching - As well as an underperforming efficiency, Belle II V0s show limited or negligible improvement to the lambda resolutions when compared to Belle - Some higher momentum studies (I. Jaegle and Y. Tao) show no statistical advantages to using to V0 mDST vs the ParticleCombinerModule reconstructions - The efficiency differences between Belle and Belle II lambdas are due to the pion efficiency - In Belle II, the pion efficiency decreases w.r.t. the decay vertex position and plateaus in the 125MeV < $p_{\scriptscriptstyle T}$ < 250MeV region - The efficiency distributions are comparable when kinematic matching, thus inefficiencies are due to missing pions from decays outside the PXD and those with $p_T < 250 MeV$ - Charge identification multiplicity is less than 1% total integrated efficiency effect, and the missing pions are not due to this misidentification - The anti-proton asymmetry from b2bii is due to the converted MCMatching of low momentum anti-proton tracks and is not found in basf or the kinematic matching - These MCMatching problems in b2bii could correlate to other efficiency abnormalities, such as the increased lambda efficiency (and track efficiency) w.r.t. the flight length R 17 ### **BONUS SLIDES** #### Truth - Reco Kinematics of MCMatched Lambda Candidates ## Truth – Reco Kinematics of MCMatched Track Candidates (before Vertexing – Particle Class) ### Integrated Efficiencies, Resolutions, and Background after MCMatching with $R_{\Lambda 0} \ge 1$ cm, $p_T^{\pi} \ge 100$ MeV, and $p_T^{p} \ge 300$ MeV | | Belle
Efficiency | Belle II
Efficiency | Belle
Resolution
(MeV) | Belle II
Resolution
(MeV) | Belle Bkgd
Fraction | Belle II
Bkgd
Fraction | |-------------|---|---|--|--|--|---| | pi-:all | 0.932 (0.916) | 0.869 (0.877) | | | | | | p+:all | 0.959 (0.92) | 0.966 (0.957) | | | | | | Lambda0:V0 | 0.75 +/- 0.0124 (0.746 +/- 0.0097) | 0.596 +/- 0.00656 (0.664 +/- 0.0075) | 1.007 +/-
0.022
(1.044 +/-
0.0251) | 1.022 +/-
0.0246
(0.984 +/-
0.0265) | 0.076 +/- 0.0125 (0.0758 +/- 0.01197) | 0.135 +/- 0.0095 (0.122 +/- 0.00995) | | Lambda0:ppi | 0.803 +/- 0.0145 (0.802 +/- 0.015) | 0.618 +/- 0.0074 (0.678 +/- 0.00987) | 1.209 +/-
0.0249
(1.227 +/-
0.0376) | 1.085 +/-
0.0242
(1.029 +/-
0.0306) | 0.08 +/- 0.0145 (0.08 +/- 0.0172) | 0.154 +/- 0.0102 (0.148 +/- 0.012) | ### Efficiency and Resolution as a function of Flight Length $R_{\Lambda 0}$ after MCMatching with $R_{\Lambda 0} \ge 1$ cm, $p_T^{\pi} \ge 100$ MeV, and $p_T^{p} \ge 300$ MeV ### Integrated Efficiencies, Resolutions, and Background after Kinematic Matching with $R_{\Lambda 0} \ge 1$ cm, $p_T^{\pi} \ge 100$ MeV, and $p_T^{p} \ge 300$ MeV | | Belle
Efficiency | Belle II
Efficiency | Belle
Resolution
(MeV) | Belle II
Resolution
(MeV) | Belle Bkgd
Fraction | Belle II
Bkgd
Fraction | |-------------|--|--|--|---|---|--| | pi-:all | 0.783 (0.779) | 0.637 (0.696) | | | | | | p+:all | 0.894 (0.889) | 0.92 (0.912) | | | | | | Lambda0:V0 | 0.728 +/- 0.0099 (0.721 +/- 0.0096) | 0.595 +/- 0.0067 (0.657 +/- 0.0083) | 0.996 +/- 0.018 (1.019 +/- 0.024) | 1.037 +/-
0.027
(0.972 +/-
0.0279) | 0.0635 +/- 0.013 (0.066 +/- 0.012) | 0.128 +/- 0.00992 (0.119 +/- 0.011) | | Lambda0:ppi | 0.747 +/- 0.0146 (0.745 +/- 0.0145) | 0.603 +/- 0.0075 (0.668 +/- 0.0106) | 1.174 +/- 0.024 (1.207 +/- 0.037) | 1.097 +/-
0.0257
(1.028 +/-
0.034) | 0.072 +/- 0.018 (0.069 +/- 0.018) | 0.15+/- 0.011 (0.146 +/- 0.014) |