

Case for studies of bulk materials at XFEL ?

Henning Friis Poulsen *Risø DTU*

- Ultimate 4D microscope
- X-ray detector with 100 nm resolution
- Alternative algorithm to hybrid-input-output

Materials science in 3D

Sectioning + optical microscopy Sample 1cm, Res: 2 µm

FIB+EBSD:

Sample 20 µm, Res: 30 nm

 $10 \ \mu m$

TEM tomography

Sample 500 nm. Res 5 nm

3D Atom Probe Sample 30 nm. Res 1 Å

Materials science in 4D

Diffraction contrast tomography

Risø: E.M. Lauridsen, S. Poulsen, A. Lyckegaard. Northwestern: P. Voorhees, I. McKenna

Phase field simulations

Navy Resarch Lab: R. Fonda ESRF: W. Ludwig, A. King, S. Rolland

4D going Nano

XFEL as ultimate 4D microscope

Penetration: Time structure

✓ (third harmonic) Beam damage. \checkmark (third harmonic + largish beam)

Problem: Complexity

Solution: decrease size of solution space

A priori information

Combine direct space and Fourier space imaging

Blurred image from direct space as starting point for Fourier space reconstruction

- Discrete objects.
- Space filling
- Smoothness
- Approx. polyhedra

Restoration:

Nanoscope @ ID11, ESRF

G. Vaughan, J. Wright, L. Margulies, U.L. Olsen, S. Schmidt

Nano-detector

Work by U.L. Olsen, S. Schmidt

- 10 200 keV
- Single photon counting
- Spatial resolution: 100 nm
- Flux: 10⁹ at synchrotron
- Efficiency: 3% at 35 keV

3D by stacking

Simulated Performance

112 nm

FWHM

- •10keV photon 2500 e/h pairs
- •150 -e typical electronic noise
- Absorption in middle of sensor

Challenges with hybrid-input-output for polycrystals

A. Alpers

Problem: overlap of the FTs of the individual shape functions (e.g., symmetry important for phase retrieval)

Work with G. Herman, CUNY

Monte Carlo approach

A. Alpers et al. J. Appl. Cryst. 39 (2006), 582-588.

Extreme case: complete overlap

Phantom

Fourier Transform

Initial guess

HIO

Monte Carlo

Specifications for bulk materials

- Option for third harmonics
- In situ processing

- Focus on algorithms
- Coupling with direct space imaging