Atomic diffusion investigation by XPCS

B. Sepiol and M. Leitner Faculty of Physics, Universität Wien

dynamics of condensed systems

Atomic diffusion mechanisms

dynamics of condensed systems

dynamics of condensed systems

Our primary goal now and in future:

overcome limitations of atomistic methods (Mössbauer, QNS, NRS) to a <u>few</u> elements (⁵⁷Fe, H, Ni, Co,Ti) and <u>fast diffusion</u> using

X-ray Photon Correlation Spectroscopy

Single atom diffusion

M. Leitner et al., Nature Mater. 8, 717 (2009)

reciprocal (001) plane

slice through (100) MC-cell:

B. Schönfeld, M.J. Portmann, S.Y. Yu, G. Kostorz, Acta Mat. **47**, 1413 (1999)

1) calculating
$$g^{(2)}(\mathbf{q},\Delta t) = \frac{\langle I(\mathbf{q},.)I(\mathbf{q},.+\Delta t)\rangle}{\langle I(\mathbf{q},.)\rangle^2}$$

2) fitting $g^{(2)}(\mathbf{q},\Delta t) = 1 + \beta e^{-2\Delta t/\tau(\mathbf{q})}$
3) verifying hypotheses $\tau(\mathbf{q}) = \tau_0 \frac{I_{\text{SRO}}(\mathbf{q})}{1 - \sum_i p_i \cos(\mathbf{s}_i \cdot \mathbf{q})}$

International Workshop on the Materials Imaging and Dynamics Instrument at the European XFEL, ESRF October 28/29, 2009

simple exponential decay!

dynamics of condensed systems

only one parameter fited !!

dynamics of condensed systems

Local dynamics in metallic glass

Systems far from equilibrium characterized by spatial and/or temporal heterogeneity e.g. dilute colloidal gels

Zr-based amorphous alloy Zr₆₅Al_{7.5}Ni₁₀Cu_{17.5}

metallic glasses - the paradigm of dense random packing of spheres

Calorimetric glass transition Tg=624K at 2K/min Extrapolated quasi-stationary Tg=605K T. Zhang, A. Inoue and T. Masumoto, Mater. Trans. JIM **32** (1991) 1005

Very long relaxation times

600K (327°C)

International Workshop on the Materials Imaging and Dynamics Instrument at the European XFEL, ESRF October 28/29, 2009

condensed systems

dynamics of condensed systems

Key parameters from your point of view the instrument should have like:

Source parameters:

- tunable energy - energy - pulse pattern uniform distribution preferable - pulse length as long as possible - polarization irrelevant Beamline optics: - monochromatizity as high as possible (preferred 10⁻⁶) due to the increased pulse length and the lower peak intensity about 10 Om - spot size - degree of coherence as high as possible (lead to lower peak intensity) - diagnostics not relevant Detector: - pixel size 10-20 Om at least 10⁶, the more the better - number of pixels - framerate 10 Hz - accessible q-range 40° scattering angle (about 3 A⁻¹) Sample environment: self-made furnaces - temperature
 - external fields

Thanks to:

Lorenz M. Stadler Bastian Pfau Friedrich Gröstlinger Gero Vogl

Faculty of Physics Universität Wien

A. Fluerasu, A. Madsen at ESRF

