Search for Contact Interactions (Status report)

I.Pidhurskyi, <u>M.Shchedrolosiev</u>, O.Turkot, K.Wichmann, A. F. Żarnecki

Content:

- → Contact Interactions
- → Migration from HERAfitter to xFitter
- → Results for General CI models
- → Comparison of results
- → Cls approach
- → Further steps

Contact Interaction

An investigation of possible effects due to the virtual exchange allows to search for evidence of new particles with mass much higher than the center of mass energy.

$$\mathcal{L}_{\text{CI}} = \sum_{\substack{k,j=L,R\\q=u,d,s,c,b}} \eta_{kj}^{eq} (\bar{e}_k \gamma^{\mu} e_k) (\bar{q}_j \gamma_{\mu} q_j)$$

NC cross section:

$$M_{ij}^{eq}(t) = -\frac{4\pi\alpha_{em}e_q}{t} + \frac{4\pi\alpha_{em}}{\sin^2\Theta_w \cdot \cos^2\Theta_w} \cdot \frac{g_i^e g_j^q}{t - M_z^2} + \eta_{ij}^{eq}$$

CC cross section:

$$\frac{d^2 \sigma_{CC}^{e^- p}}{dx dQ^2} = (1 - P) \frac{1}{\pi} \sum_{i=1}^{2} [u_i(x, Q^2) + (1 - y)^2 \bar{d}_i(x, Q^2)] \times \left[\frac{G_F}{\sqrt{2}} \frac{M_W^2}{M_W^2 + Q^2} - \frac{\eta_i^{evu d}}{4} \right]^2$$

Contact Interaction

Combined QCD + CI Fit (PDF fit together with CI parameters fit):

In HERAPDF2.0 appoach:

$$xg(x) = A_g x^{B_g} (1-x)^{C_g} - A'_g x^{B'_g} (1-x)^{C'_g}$$

 $xu_v(x) = A_{u_v} x^{u_v} (1-x)^{C_{u_v}} (1+E_{u_v} x^2)$
 $xd_v(x) = A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}}$
 $x\bar{U}(x) = A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}} (1+D_{\bar{U}} x)$
 $x\bar{D}(x) = A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}}$

$$\sigma_{NLO}^{SM+CI} = \sigma_{NLO}^{SM} \frac{\sigma_{LOEW}^{SM+CI}}{\sigma_{LOEW}^{SM}}$$

Reason for the simultaneous fit procedure:

- → BSM signal in the data could affect the PDF fit and result in biased PDFs
- → This cannot be avoided for the analysis of HERA data by using another available PDF set
- → Use of the biased PDFs in the BSM analysis would result in overestimated limits.

Fitting procedure

Data

→ Fit (free η + PDFs) →
$$η$$
^{Data}

Replicas ($\eta = \eta^{true}$):

Replica

→ Fit (free η + PDFs) →
$$η^{Fit}$$

Frequentist approach

$$\eta = \pm \frac{g_{CI}^2}{\Lambda^2}$$

Migration from HERAfitter to xFitter

To migrate to xFitter framework:

- Simplified fit algorithm were implemented
- C.I. models were implemented
- MC replicas was fixed
- Errors treatment in χ^2 for MC replicas was corrected

$$\chi_{MC}^{2} = \frac{\sum_{i} \left[m^{i} + \sum_{j} \gamma_{j}^{i} m^{i} s_{j} - \mu_{0,MC}^{i} \right]^{2}}{\left(\delta_{i,stat}^{2} + \delta_{i,uncor}^{2} \right) \left(\mu_{0,data}^{i} \right)^{2}} + \sum_{j} s_{j}^{2}$$

m^{*i*} - theory predictions,

 μ^{i} - cross section from data or MC replicas

Default xFitter:

$$\mu^{i} = m_0^{i} + \sqrt{\delta_{i,stat}^{2} + \delta_{i,uncor}^{2}} \cdot \mu_0^{i} \cdot r_i + \sum_{j} \gamma_{j}^{i} \cdot \mu_0^{i} \cdot b_j$$

Our analysis:
$$\mu^i = \left[m_0^i + \sqrt{\delta_{i,stat}^2 + \delta_{i,uncor}^2} \cdot \mu_0^i \cdot r_i
ight] \cdot \left(1 + \sum_j \gamma_j^i \cdot r_j
ight)$$

Good agreement of Monte Carlo replicas for HERAfitter and xFitter

Migration from HERAfitter to xFitter

To test our CI implementation we compared xFitter default $\sigma^{\text{ LO}}$ and our subroutine $\sigma^{\text{ LO}}$

- NC Δ < 1e-13 %
- CC Δ < 3e-2 %

Good agreement for NC and CC

$$\sigma_{NLO}^{SM+CI} = \sigma_{NLO}^{SM} \frac{\sigma_{LOEW}^{SM+CI}}{\sigma_{LOEW}^{SM}}$$

0.0000 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
$$\sigma_{modif}^{LO}[nb]$$

$$\Delta = (\sigma_{xfitter}^{LO} - \sigma_{modify}^{LO})/\sigma_{modify}^{LO}$$

Results for General CI models (after the migration to the xFitter)

HERA $e^{\pm}p$ 1994-2007 data

		95%	C.L. limit	s (TeV)	
Coupling structure		Mea	Expected		$\eta_{\mathrm{CI+PDF}}^{\mathrm{Data}}$	
Model	$[\epsilon_{\scriptscriptstyle LL},\!\epsilon_{\scriptscriptstyle LR},\!\epsilon_{\scriptscriptstyle RL},\!\epsilon_{\scriptscriptstyle RR}]$	Λ^{-}	Λ^+	Λ^-	Λ^+	(TeV^{-2})
LL	[+1, 0, 0, 0]	19.0	4.9	5.9	6.3	0.302
RR	[0, 0, 0, 0]	26.1	4.4	5.7	6.1	0.334
VV	[+1, +1, +1, +1]	14.5	9.7	11.2	11.6	0.040
AA	[+1, -1, -1, +1]	-	5.7 - 19.1	8.7	8.6	0.213
VA	[+1, -1, +1, -1]	-	3.7 - 10.2	4.2	4.2	0.664
X1	[+1, -1, 0, 0]	-	3.9 - 9.5	6.1	5.9	0.493
X2	[+1, 0, +1, 0]	10.1	6.9	7.8	8.3	0.086
X4	[0, +1, +1, 0]	7.9	9.6	8.5	9.0	-0.023
X5	[0, +1, 0, +1]	10.1	7.0	-	-	0.077
X6	[0, 0, +1, -1]	3.7 - 8.2	-	-	-	-0.565

95% C.L. measured and expected limits on the compositeness scale, ∧ for the considered general contact-interactions models.

$$\eta = \pm \frac{g_{CI}^2}{\Lambda^2}$$

HERA e⁺⁻p 1994-2007 95% C.L.

Comparison of the expected limits

Frequentist approach previous research

			1	
95% C.	L. limi	$_{n}Data (T_{e}V^{-2})$		
Model	Λ^-	Λ^+	$\eta_{CI_{PDF}}^{Data} \ (TeV^{-2})$	
LL	5.9	6.2	0.308	
RR	5.7	6.1	0.341	
VV	11.0	11.4	0.043	
AA	7.9	7.8	0.324	
VA	4.1	4.1	0.679	
X1	5.7	5.6	0.680	
X2	7.8	8.2	0.091	
X4	8.0	8.6	-0.026	

Frequentist approach (current research):

`		,		
95% C.	L. limi	$\eta_{CI_{PDF}}^{Data} \ (TeV^{-2})$		
Model	Λ^-	Λ^+	$\eta_{CI_{PDF}}$ (1 eV)	
LL	5.9	6.3	0.302	
RR	5.7	6.1	0.334	
VV	11.2	11.6	0.040	
AA	8.7	8.6	0.213	
VA	4.2	4.2	0.664	
X1	6.1	5.9	0.493	
X2	7.8	8.3	0.086	
X4	8.5	9.0	-0.023	

HERA e⁺⁻p 1994-2007 95% C.L.

Good agreement of the expected limits.

Comparison of the measured limits

Frequentist approach (previous research):

L. limi	$\eta^{Data}_{CI_{PDF}} \ (TeV^{-2})$	
Λ^-	Λ^+	$\eta_{CI_{PDF}}$ (1 eV)
22.0	4.5	0.308
32.9	4.4	0.341
14.7	9.5	0.043
-	4.8-10.4	0.324
-	3.6-10.1	0.679
-	3.5-6.6	0.680
10.8	6.8	0.091
7.6	9.2	-0.026
	Λ ⁻ 22.0 32.9 14.7 10.8	22.0 4.5 32.9 4.4 14.7 9.5 - 4.8-10.4 - 3.6-10.1 - 3.5-6.6 10.8 6.8

Frequentist approach (current research):

`		,	
95% C	C.L. limit	$\eta_{CI_{PDF}}^{Data} \ (TeV^{-2})$	
Model	Λ^-	Λ^+	$\eta_{CI_{PDF}}$ (1 eV)
LL	18.1	4.6	0.302
RR	26.1	4.4	0.334
VV	14.5	9.7	0.040
AA	-	5.7 - 19.1	0.213
VA	-	3.7-10.2	0.664
X1	-	3.9 - 9.5	0.493
X2	10.1	6.9	0.086
X4	7.9	9.6	-0.023

HERA e⁺⁻p 1994-2007 95% C.L.

Difference between new and previous measured limits are mostly due to the difference in $\eta^{\mbox{\tiny data}}$

Cls approach for cross check

Data
$$\rightarrow$$
 Fit $(\eta=0, \Delta \eta=0)$ \rightarrow L $_{b}^{data}$

Replicas ($\eta = \eta^{true}$):

Data
$$\rightarrow$$
 Fit $(\eta = \eta^{true}, \Delta \eta = 0) \rightarrow$ L $_{s+b}^{data}$

Replica
$$(\eta = \eta^{true}) \rightarrow Fit (\eta = 0, \Delta \eta = 0) \rightarrow L_b$$

Replica (
$$\eta$$
= η^{true}) \rightarrow Fit (η = η^{true} , $\Delta \eta$ =0) \rightarrow L _{s+b}

$$Q = L_{s+b}/L_b$$

$$P(Q < Q_{data})$$

$$\eta = \eta_{true}$$

\Lambda+: 9.8 TeV Cls approach

- Good agreement
- •Can be used for cross check of measured limits

Futher steps

• Calculate all general contact interaction models

110ac									
Model	η_{LL}^{ed}	η_{LR}^{ed}	η_{RL}^{ed}	η_{RR}^{ed}	η_{LL}^{eu}	η_{LR}^{eu}	η_{RL}^{eu}	η_{RR}^{eu}	
VV	$+\eta$								
AA	$+\eta$	$-\eta$	$-\eta$	$+\eta$	$+\eta$	$-\eta$	$-\eta$	$+\eta$	
VA	$+\eta$	$-\eta$	$+\eta$	$-\eta$	$+\eta$	$-\eta$	$+\eta$	$-\eta$	
X1	$+\eta$	$-\eta$			$+\eta$	$-\eta$			
X2	$+\eta$		$+\eta$		$+\eta$		$+\eta$		
Х3	$+\eta$			$+\eta$	$+\eta$			$+\eta$	
X4		$+\eta$	$+\eta$			$+\eta$	$+\eta$		
X5		$+\eta$		$+\eta$		$+\eta$		$+\eta$	
X6			$+\eta$	$-\eta$			$+\eta$	$-\eta$	
U1					$+\eta$	$-\eta$			
U2					$+\eta$		$+\eta$		
U3					$+\eta$			$+\eta$	
U4						$+\eta$	$+\eta$		
U5						$+\eta$		$+\eta$	
U6							$+\eta$	$-\eta$	

Calculate LQ models

Model	a_{LL}^{ed}	$a_{LR}^{ed} \\$	$a_{RL}^{ed} \\$	$a_{RR}^{ed} \\$	a_{LL}^{eu}	a_{LR}^{eu}	a^{eu}_{RL}	a_{RR}^{eu}
S_{\circ}^{L}					$+\frac{1}{2}$			
S_{\circ}^{R}					2			$+\frac{1}{2}$
S_{\circ}^{L} S_{\circ}^{R} \tilde{S}_{\circ} $S_{1/2}^{L}$ $S_{1/2}^{R}$ $\tilde{S}_{1/2}$				$+\frac{1}{2}$				2
$S_{L_{i_0}}^L$. 2		$-\frac{1}{2}$		
$c_{1/2}$ c_R			1			2	1	
$\tilde{c}_{1/2}$		1	$-\frac{1}{2}$				$-\frac{1}{2}$	
		$-\frac{1}{2}$. 1			
S_1	+1				$+\frac{1}{2}$			
V^L_{\circ}	-1							
V_{\circ}^{R}				-1				
\tilde{V}_{\circ}								-1
$V_{1/2}^{L}$		+1						
V_{\circ}^{L} V_{\circ}^{R} \tilde{V}_{\circ} $V_{1/2}^{L}$ $V_{1/2}^{R}$ $\tilde{V}_{1/2}$			+1				+1	
$\tilde{V}_{1/2}$						+1		
V_1	-1				-2			

- limits already evaluated

- work in progress

Time constraints ~ 4 weeks

Possible set of preliminary plots

(Plots from ICHEP 2016)

The probability of obtaining η^{Fit} values smaller than that obtained for the actual data, η^{DATA} calculated from Monte Carlo replicas, as a function of the assumed value for the eta parameter $\eta^{\text{True.}}$

Possible set of preliminary plots

(Plots from ICHEP 2016)

Cross section deviations from the SM perditions allowed at 95% C.L. for electron-proton and positron NC DIS, as resulting from the analysis of HERA combined data in the Quark Radius Formfactor scenario

Summary

Already done:

- Comparison with old results (presented at ICHEP 2016) is completed
- Implemented all modifications to xFitter framework
 - 1) Simplified fit algorithm was implemented
 - 2) C.I. models was implemented
 - 3) CLs approach modifications
- Tested CLs approach (through the calculation of likelihood)

Futher steps:

- Switch calculations to the HTCondor
- Find 95% C.L. for 6 U-models
- Find 95% C.L. for 14 Leptoquarks models