QCD background smearing function studies CMS SUSY hadronic working group meeting

Matthias Schröder long list of names

June 26th, 2009

Motivation: Understanding the QCD background to $\not\in_T$

- Missing transverse energy, ∉_T, is an important signature in the search for new physics
- Large #_T-background expected from QCD events in the all-hadronic channel:
 - Particles invisible to the calorimeter e.g. μ or ν
 - Mismeasurement due to intrinsic calorimeter resolution
 - Mismeasurement due to detector acceptance
 - **.** . . .

MET in QCD

Understanding of QCD contribution to $\not\!\!E_T$ important

Outline

Different concepts to estimate the QCD $\not\!E_T$ contribution

- Estimation from MC simulation
- ABCD method
- Jet smearing method
- . . .

Concept of the jet smearing method

- Selection of well measured QCD events
- 2 Smearing with resolution function $p_T^{\text{meas}}/p_T^{\text{true}}$

Challenges of the jet smearing method

- Application of resolution function to QCD events (UCSB)
 - Selection criteria
 - Acceptance effects
 - Normalization of smeared events
 - Effect of double smearing
- Determination of resolution function → this talk

Determination of the resolution function

- True jet p_T from MC simulation
 - Depends completely on simulation
- ullet γ -jet or Z-jet events
 - $ightharpoonup p_T^{\gamma,Z}$ relatively well measured
 - Low statistics, jet-parton matching uncetrainty
- MET projection method
 - N-jets with ∉_T parallel to one jet
 - Other jets assumed to be measured correctly
 - Might neglect mismeasurement of other jets

Resolution fit — this talk

- N-jet events
- All jets assumed to be mismeasured by resolution function

4 D V 4 D V 4 D V 4 D V 5 D

Concept of the resolution fit method

(see talk by C. Sander)

Details for dijet events

ullet In each event i, probability for a given dijet configuration $p_T^{j1},\;p_T^{j2}$ is

$$\mathcal{P}_{1,2}^{i} = \frac{1}{N} \int_{0}^{\infty} \mathrm{d}p_{T}^{\mathsf{true}} \, f(p_{T}^{\mathsf{true}}) \cdot r_{b}(p_{T}^{j1}/p_{T}^{\mathsf{true}}) \cdot r_{b}(p_{T}^{j2}/p_{T}^{\mathsf{true}})$$

- f is the probability density function (pdf) of p_T^{true}
- $ightharpoonup r_b$ is the parameterized resolution function
- N is the normalization
- Likelihood $\tilde{\mathcal{L}} = \prod_{i=0}^{N_{\mathrm{evt}}} \mathcal{P}_{1,2}^i$ maximal for correct response function r_b
- Minimization w.r.t. b of negative log-likelihood function

$$\mathcal{L} = -\sum_{i=0}^{N_{ ext{evt}}} \mathsf{ln}(\mathcal{P}_{1,2}^i)$$

4□ > 4₫ > 4분 > 4분 > 분 외익()

Possible paramtrizations of the resolution function

Analytic function

- Smooth behaviour
- Small number of parameters
- Normalization simple in some cases
- Functional form difficult to determine

Step function

- Normalization simple
- Describes any distribution if appropriately binned
- Many parameters
- Discontinuities

Spline

- Smooth behaviour
- Normalization difficult
- Technically complex

Details of the resolution parametrization

Superposition of Gaussian and interpolated step function

$$r_b(R) = c \cdot G(R; 1, \sigma) + (1 - c) \cdot S(R; b)$$

- Normalization c
- Central Gaussian G around 1 (assume calibrated jets)
- Step function S with N=8 parameters to describe tails
 - ▶ Bin content $b_i \ge 0$ by construction fit guided by penalty terms
 - \triangleright Actual S(R) is linear interpolation of adjacent bin contents
 - ▶ Only N-1 parameters are fitted \longrightarrow fixed scale

June 26th, 2009

The fitting framework

- Extension of the *kalibri* tool from the University of Hamburg
- Originally developed for jet calibration via an unbinned fit
- Utilizes LVMINI by V. Blobel (reference)
 - Limited memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) algoritm
 - ▶ Support for $\mathcal{O}(10^4)$ parameters
- Highly configurable object-oriented framework
- Support for different parametrizations and data sets
- Support for parameter limits
- Multiple threads to exploit use of multi-core processors
- Automated production of control plots
- Validation via Toy Monte Carlo
 - Generation of jet 4-momenta according to specified p_T spectrum
 - Distribution of jet energy on several towers according to specified jet shape
 - Simulation of tower measurement according to specified resolution model

11 / 24

Input sample from ToyMC

- Generation of dijet events
- Simulated resolution is sum of two Gaussians

$$c\cdot G_0(1,\sigma_0)+(1-c)\cdot G_1(\mu_1,\sigma_1)$$

where

- c = 0.96
- $\sigma_0 = 0.06$
- $\mu_1 = 0.9$
- $\sigma_1 = 0.25$
- p_T^{true} -spectrum flat or falling

Resolution R = p_T / p_T^{gen}

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Results from Toy MC with flat spectrum

• Correct spectrum assumed during fit

Results from Toy MC with flat spectrum

Parameter	Scale	Start value	Fitted value
С	1	0.96	0.951435
σ	0.1	0.6	0.602761
0	0.01	1	0.85526
1	0.1	1	0.970787
2	0.1	1	1.38628
3	0.5	1	1.08298
4	0.5	1	1
5	0.5	1	0.147644
6	0.1	1	0.941145
7	0.01	1	0.999452

Results from Toy MC with falling spectrum

• Correct spectrum assumed during fit

Results from Toy MC with falling spectrum

• Correct spectrum assumed during fit

Results from Toy MC with falling spectrum

Parameter	Scale	Start value	Fitted value
С	1	0.96	0.944033
σ	0.1	0.6	0.599104
0	0.01	1	0.928335
1	0.1	1	0.806321
2	0.1	1	1.19273
3	0.5	1	1.07337
4	0.5	1	1
5	0.5	1	0.604311
6	0.1	1	0.10949
7	0.01	1	1.04362

Systematics

- Influence of variation of spectrum
- Influence of cuts on pt

Application on Summer08 QCDDiJets

Resolution pthat fit

- Event selection in example \hat{p}_T -bin
 - $\rightarrow x < \hat{p}_T < X \text{ GeV}$
 - ▶ Jet GenJet matching criteria $\Delta R < 0.25$ (avoid bias, see the other talk)
 - No weights
- p_T^{true} -spectrum from fit on \hat{p}_T

Systematics

- Influence of variation of spectrum
- Influence of cuts on pt

Summary

Outlook

- Fit over whole pthat range with energy dependent function?
- Fit of spectrum?
- Resolution from fit to L2L3 corrected jets
- p_T-binning of resolution function: bias due to cut on measurement
- Splitting of resolution into b/c, calorimeter

Backup

Normalization

$$N = \int \int \int \mathrm{d}p_T^{\mathsf{true}} \mathrm{d}p_T^{j1} \mathrm{d}p_T^{j1} f(p_T^{\mathsf{true}}) \cdot r_b(p_T^{j1}/p_T^{\mathsf{true}}) \cdot r_b(p_T^{j2}/p_T^{\mathsf{true}})$$