

VXD Alignment: Phase II

Jakub Kandra(jakub.kandra@karlov.mff.cuni.cz)
Tadeas Bilka (bilka@ipnp.troja.mff.cuni.cz)

Charles University, Prague

May 25, 2018

Outline

VXD Alignment of Phase II

Results of alignment procedure

Alignment validation using collision and cosmic data

Summary

Status of VXD alignment

Alignment

- First calculated VXD alignment is done and published in "Calibration Offline Development".
- It can be used for reprocessing.
- We are using it for validation on collision and cosmic data.
- We are working on (semi-)automatic alignment and validation procedure.
- We are calculate VXD alignment separately to check alignment parameters.
- The both alignment are discussed.

VXD Alignment procedure

Cosmic rays

Alianment

- (Experiment 2) Runs 904, 905, 906, 919, 920, 938, 1107 and 1110 are used for alignment and validation.
- We collected more than 70 0000 cosmic tracks.
- Tracking information of cosmic rays looks very good.
- Applied PXD and SVD masking procedure during reconstruction.

Beam collision datasets

- (Experiment 3) Runs 577, 578, 579, 580, 674, 677, 686, 782, 783, 785 and 786 are used for alignment and validation.
- We collected more than 70 0000 cosmic tracks.
- Applied PXD and SVD masking procedure during reconstruction.

VXD alignment procedure

Alianment

- We are fixing CDC. It is dependent of CDC alignment
- We are using magnetic fields depends on experimental number.
- We are fixing all half-shells and ladders (in alignment hierarchy).
- The Millepede algorithm calculates 108 (18 sensors × 6) parameters

Alignment studies using cosmic rays

- The Millepede algorithm is using 50 krecords.
- Alignment validation are used too.

Alignment studies using collision data

- The Millepede algorithm is using 30 krecords.
- RecoTracks composed via CDCHits and (PXDHits or SVDHits).
- VXDHits more or equal to 3.
- Alignment validation are used too.

VXD Alignment of Phase II

Results of alignment procedure

Alignment validation using collision and cosmic data

Summary

Occupancy and tracking quality of cosmic rays

Number of VXD hits in tracks (left) and occupancy of VXD layers (right).

Number degrees of freedom (NDF) on track (left) and χ^2/NDF of tracks (right).

New SVD alignment

u = -33.71404 umv = 1264.2411 umw = 748.1956 um $\alpha = -2.51509 \text{ mrad}$ $\beta = 6.8963 \, \text{mrad}$

v = 2.75465 mrad

u = -62.40701 umv = 1401.3783 umw = -86.21158 um $\alpha = 1.993 \text{ mrad}$ $\beta = 9.43731 \text{ mrad}$

v = -1.29721 mrad

u = 115.03165 umv = 1400.30803 umw = -86.7122 um $\alpha = -2.62172 \text{ mrad}$ B = 4.28242 mradv = -1.5226 mrad

u = 293.5339 umv = 1389.77761 umw = -281.3629 um $\alpha = -0.15357 \text{ mrad}$ $\beta = 0.31371 \text{ mrad}$ v = -1.4522 mrad

u = 623.98253 umv = 1405.5495 umw = -98.2731 um $\alpha = 2.49757 \text{ mrad}$ $\beta = -4.56417 \text{ mrad}$ v = -0.04307 mrad

layer 5 ladder 1

= -220.7334 um v = 1305.7779 umw = 515.8123 um $\alpha = -2.34351 \, \text{mrac}$ $\beta = 8.68049 \text{ mrad}$

v = 2.71428 mrac

u = -68.53501 umv = 1481.26957 um w = -211.02487 um $\alpha = -4.52472 \text{ mrad}$ B = 10.53553 mradv = -2.83053 mrad

u = 238.53304 umv = 1492.39488 um w = -375.2288 um $\alpha = 0.91889 \text{ mrac}$ $\beta = 5.50777 \text{ mrad}$

v = -2.1763 mrac

u = 610.86129 umv = 1434.18921 um w = -46.66411 um $\alpha = 4.14148 \text{ mrad}$ B = 1.34236 mradv = -1.4508 mrac

Results of alignment procedure using cosmic rays and collisions.

The largest shift is in v(z) alignment parameters.

Sum of systematic and statistic errors for shifts are \approx 100 um. Sum of systematic and statistic errors for rotations are ≈ 1.0 mrad.

New SVD alignment

layer 3 ladder 1

Results of alignment procedure using cosmic rays and collisions.

The largest shift is in v(z) alignment parameters.

Sum of systematic and statistic errors for shifts are \approx 100 um.

Sum of systematic and statistic errors for rotations are ≈ 1.0 mrad.

New PXD alignment

	$u = 1279.8057 \text{ um}$ $\alpha = 1.1749 \text{ mrad}$	$u = 1122.5584 \text{ um}$ $\alpha = 1.14043 \text{ mrad}$
layer 2 ladder 1	$v = 2511.1409 \text{ um}$ $\beta = -5.11015 \text{ mrad}$	$v = 2055.2759 \text{ um}$ $\beta = -9.06401 \text{ mrad}$
	$w = -133.3009 \text{ um}$ $\gamma = -16.10861 \text{ mrad}$	$w = -131.3294 \text{ um}$ $\gamma = 10.17553 \text{ mrad}$
	$u = 562.2949 \text{ um}$ $\alpha = -1.00498 \text{ mrad}$	$u = 603.2556 \text{ um}$ $\alpha = 5.19397 \text{ mrad}$
layer 1 ladder 1	$v = 2482.1325 \text{ um}$ $\beta = -0.38789 \text{ mrad}$	$v = 2000.0123 \text{ um}$ $\beta = -9.92172 \text{ mrad}$
	w = -347.0658 um $y = -3.24455 mrad$	$w = -422.475 \text{ um}$ $\gamma = 1.73578 \text{ mrad}$

Results of alignment procedure using cosmic rays and collisions.

The largest shift is in v(z) alignment parameters.

Sum of systematic and statistic errors for shifts are \approx 100 um.

Sum of systematic and statistic errors for rotations are \approx 1.0 mrad.

VXD Alignment of Phase II

Results of alignment procedure

Alignment validation using collision and cosmic data

Summary

VXD alignment validation using cosmic rays

Unbiased residuals for all VXD sensors in phase 2 in U side.

Results calculated using GT are marked as red dots.

VXD alignment validation using cosmic rays

Unbiased residuals for all VXD sensors in phase 2 in V side.

Results calculated using GT are marked as red dots.

VXD alignment validation using collision data

Unbiased residuals for all VXD sensors in phase 2 in U side.

Results calculated using GT are marked as red dots.

VXD alignment validation using collision data

Unbiased residuals for all VXD sensors in phase 2 in V side.

Results calculated using GT are marked as red dots.

Summary

- We were calculate two independent alignment for checking alignment procedure.
- One of them is published in GT "Calibration Offline Development" (back-up)
- Second is stored locally only

/home/belle2/jkandra/basf2/beam/alignment/phase2/data/cosmicAndBeam/database.txt

- Systematic and statistical errors are ≈ 100 um and 1.0 mrad.
- Alignment constants are validated using cosmic rays and collisions.
- The alignment and validation procedure are semi-automatic.

Plans for next weeks

- Time dependent analysis of validation variables (residuals).
- Developed full automatized procedure to validate and calculate alignment.
- The second alignment parameters will be updated to GT soon.

Backup

GT Alignmen

Geometry of Phase II

- ECL, CDC, VXD and Beast will be used.
- VXD: One ladder in each layer
- VXD: 4 sensors of PXD and 14 sensors of SVD
- Beast: Dedicated radiation monitors (FANGS, CLAWS, PLUME)
 - $\phi_{FANGS} = \{90^{\circ}, 180^{\circ}, 270^{\circ}\}$
 - $\phi_{\it CLAWS} = \{135^{\circ}, 225^{\circ}\}$
 - $\phi_{PLUME} = \{135^{\circ}, 225^{\circ}\}$

GT Alignmen

Geometry of Phase II

- Similar geometry as in VXD DESY TestBeam 2017
- Difference between Phase II and VXD DESY TestBeam 2017:
 - VXD TB 2017: narrow beam of e⁻
 - VXD TB 2017: beam is perpendicular to planes of sensors
 - VXD TB 2017: low beam background and no cosmic rays
 - Phase II: particles from collisions
 - Phase II: particles fly out from the IP to all θ directions
 - Phase II: realistic beam background and cosmic rays

Geometry of Phase II in XZ direction.

GT Alignment

SVD alignment in GT

Results of alignment procedure published in GT.

The largest shift is in v(z) alignment parameters.

Sum of systematic and statistic errors for shifts are \approx 100 um. Sum of systematic and statistic errors for rotations are \approx 1.0 mrad.

GT Alignment

SVD alignment in GT

layer 3 ladder 1

Results of alignment procedure published in GT. The largest shift is in v(z) alignment parameters. Sum of systematic and statistic errors for shifts are ≈ 100 um.

Sum of systematic and statistic errors for rotations are \approx 1.0 mrad.

GT Alignment

PXD alignment in GT

Results of alignment procedure published in GT.

The largest shift is in v(z) alignment parameters.

Sum of systematic and statistic errors for shifts are \approx 100 um.

Sum of systematic and statistic errors for rotations are \approx 1.0 mrad.