Isolating the main processes at LUXE

[Hartin, Ringwald, Tapia]

- Three main processes at LUXE HICS gamma production, One photon pair production (OPPP), Trident process (HICS gammas + strong field) pair production
- There are compelling reasons to study the three processes separately
- HICS shows mass shift strong field leads to increase in electron rest mass
- Trident leads to rare resonance processes, related to dispersive vacuum
- OPPP pair production at ultra high intensity
 non-perturbative physics
- PROBLEM: Trident process pair production limited by laser intensity (suppressed already at $\xi \sim 3$)
- SOLUTION: Use foil to convert electrons to gammas upsteam of the strong field IP with high intensity laser further upstream

High energy gamma rate via foil bremsstrahlung

- For pure OPPP process we need foil upstream of strong field IP. This produces significant spray of e+e- as well as gammas
- Foil e+e- spray mixes with strong field pair prod. So either rely on detector discrimination, OR bend away with deflection system before second IP.
- Foil will interfere with HICS/Trident so it should be removable. Experiment operates in two modes.
- Distance of foil from strong field IP limited by beamstrahlung divergence. We need a good overlap of gammas and strong field laser at focus.
- Needs to be studied fully in mixed Geant/IPstrong simulation
- Radiation safety, Detector issues, Transition rates etc.

Strong field + foil, experimental setup

Bremsstrahlung divergence and strong field IP

Bremsstrahlung from foil - Geant vs parametrisation

- Initial LUXE Geant model set up. Studied bremsstrahlung from thin foil of various thicknesses
- Foil produces higher energy gammas at rate orders of magnitude above HICS rate
- Thin foils produce more high energy gammas. (wear and tear on the foil?)
- Analytic fits of bremsstrahlung rates studied for foil thickness above and below radiation length
- Approximation formula quoted in arxiv:1802.06612 - not very satisfactory.
 Need full monte carlo

$$rac{dN}{df}pproxrac{(1-f)^{4l/3}-e^{-7l/9}}{f(7/9+4/3\ln(1-f))}$$
 $\omega_{
m brem}$ foil thickness

 Find suitable analytic fit function. Fold with OPPP rate, to get overall pair production rate

radiation length

Foil bremsstrahlung rate vs HICS

Foil bremsstrahlung rate fit

Bremsstrahlung + OPPP rates

- Find suitable analytic fit function for bremsstrahlung from coverter
- V2 parametrisation works at X₀ and mid to high energies

$$\frac{dN}{df} \approx \frac{l \left[\frac{4}{3} \left(1 \text{-} f \right) + f^2 \right]}{f^2} \frac{\left(1 \text{-} f \right) \frac{4l}{3} - e^{-\frac{7l}{9}}}{\frac{7}{9} + \frac{4}{3} \ln (1 - f)}$$

$$f=rac{\omega_{ extsf{brem}}}{17.5\, extsf{GeV}}, \quad l=rac{ ext{foil thickness}}{ ext{radiation length}}$$

- Calculate rates for one photon pair production with initial bremsstrahlung photons
- Assume all electrons are converted and all photons interact with 20 fs strong laser about two pairs per bunch
- Assume, $\xi, \chi_g = \frac{2\xi k \cdot k_i}{m^2}$ and bremsstrahlung rate are known for each pair
- Plot of scaled rate vs ξ at constant $\chi_{\mathfrak{q}}$ asymptotes for measurable range at LUXE

Foil bremsstrahlung rate fit 50000, 17.5 GeV initial e's Bremstrahlung from X0 thick converters Geant data (points) parametrisation (lines) 0.8 0.7 0.6 f/l)*dN/df 0.5 0.3 f=Photon Energy/Initial electron energy

