Cross-cleaning in SUSY events

Friederike Nowak, <u>Benedikt Mura</u>, Christian Autermann, Christian Sander

Hamburg University

Hamburg CMS Meeting 07/15/2009

SPONSORED BY THE

Outline

- Introduction
- Steps of the cross-cleaning
- Details and Validation
 - Electron-jet cleaning
 - Photon-jet cleaning
 - Muon-jet cleaning
- Summary
- Links to documentation

Introduction

- A typical (SUSY-) analysis uses
 - a signature like: Leptons + Jets + MET
 - quantities calculated from objects, e.g. H_→, hemispheres, ..
- Several collections of independently reconstructed objects are used

Reconstruction not unambiguous – objects 'share' energy

Introduction

- Avoid double counting of energy
- Find cases of object overlaps
- Resolve the conflicts
- Set up a cross-cleaning package for PAT Layer 1 collections

- Possible ambiguities (before object identification/cleaning):
 - Each supercluster makes a photon and electrons are a subset of those ⇒ each electron is also a photon
 - 2. High energy electron/photon make a jet
 - 3. Jet EM energy is reconstructed as an electron/photon
 - 4. (Muon and electron share the track/hits)
 - 5. Muons/electrons/photons produced inside a jet (isolation issue)

X-cleaning Steps I

1. Create a map with all conflicting objects in an event

 Individual procedure for each pair of collections

Cross Cleaner Map

Modify	because of	How?
jet x	electron y	remove
jet y	electron z	Add 2 GeV
	photon a	add 3.1 GeV
	photon b	add 1.5 GeV
photon a	electron z	remove

 Takes care of interferences (a removed object does not modify another one)

- Also available: muon-jet cleaning
- Can be turned on/off as desired

X-cleaning Steps II

- 2. Create clean collections using this map
 - Loop over input collections
 - Modify each object according to the map
 - either change its energy if requested and put it in the clean collection
 - or put it in the collection of dropped objects
 - Create new MET collection with updated jet corrections

Electron-Jet Cleaning

Along the lines of 'SusyAnalyzer' cleaning

Test Electron-Jet Cleaning

- Many electron-jet pairs with small ΔR in SUSY sample
- For matched electrons E_{shared}/
 E_{iet} is close to one
- Jets and electrons separated in ΔR after the cleaning

LM4 sample, 'eidRobustLoose' electrons with jet overlap

Effect of Electron-Jet Cleaning

- Cut on isolation determines final electron efficiency and contamination
- Contamination (aka Impurity, No. of unmatched / No. of reconstr.)
 - Falls to very low level
 - Spikes in pseudorapidity removed
- Only small number of jets modified
- Tail in recoil MET (4-vector sum of all particles) reduced
- Better agreement with Calo MET shape after cleaning

Photon-Jet Cleaning

Along the lines of SusyAnalyzer cleaning

Effect of Photon-Jet Cleaning

 γ -Jet events (p_T > 80)

- Peak in recoil MET: double counting of energy
- One photon left in most events after cleaning
- Need additional electron-jet cleaning to remove MET tail

Other Cleaners

Muon-Jet

Electron-Photon

Jet energy handling:

- Cleaners are always using uncorrected Jets
- Jet Corrections are recalculated at the end

Muon-Jet Cleaning

- Non-isolated Muons: in most of the pairs with dR<0.2 jet is the only object matched
 - Peak at small dR for ~15% of all isolated muons (in LM4) sample
- ~25% of these muons have a photon from final state radiation in dR<0.3
- ~25% of these muons have other particles in dR<0.3
- Rest is caused by non-hardprocess interactions

Summary

- Overlap among reco objects of different types
- Configurable cross-cleaning module for PAT collections to
 - find these conflicts
 - resolve them
- Cleaning of electron, photon, jet and muon collections
- Complements selection of 'good' objects
- Reduces fake rates
- Improves event energy balance (recoil MET)
- Needs to be tuned for each analysis

Documentation

- https://twiki.cern.ch/twiki/bin/view/CMS/SusyPatCrossCleaner
 - Description of cleaning procedure
 - Instructions how to use it
 - Details on Configuration
 - How to access cleaned collections
 - Link to doxygen code documentation
- Coming soon
 - Internal Note with details on the package and its validation

BACKUP SLIDES

Electron-Jet Cleaning

Non-isolated electrons

Photon-Jet Cleaning

Muon-Jet Cleaning

