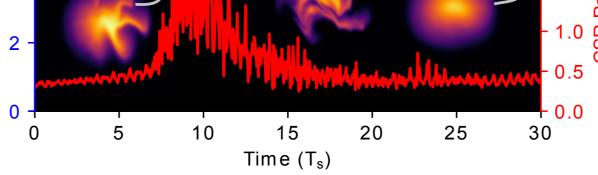


Karlsruhe Institute of Technology



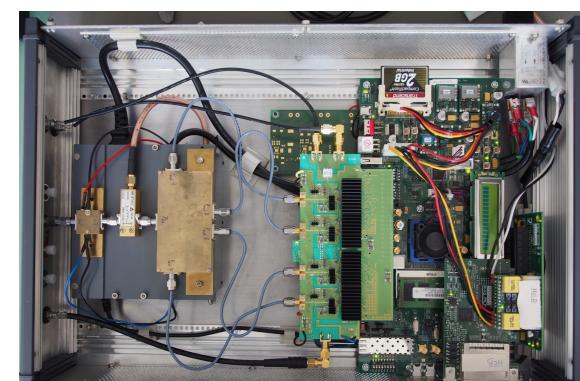
Studies of the Micro-Bunching Instability in the Presence of a Damping Wiggler

M. Brosi* (miriam.brosi@kit.edu), J. Gethmann** (julian.gethmann@kit.edu), A. Bernhard, B. Kehrer, A. Papash, P. Schönfeldt*, P. Schreiber, J. L. Steinmann* and A.-S. Müller Karlsruhe Institute of Technology, Karlsruhe, Germany

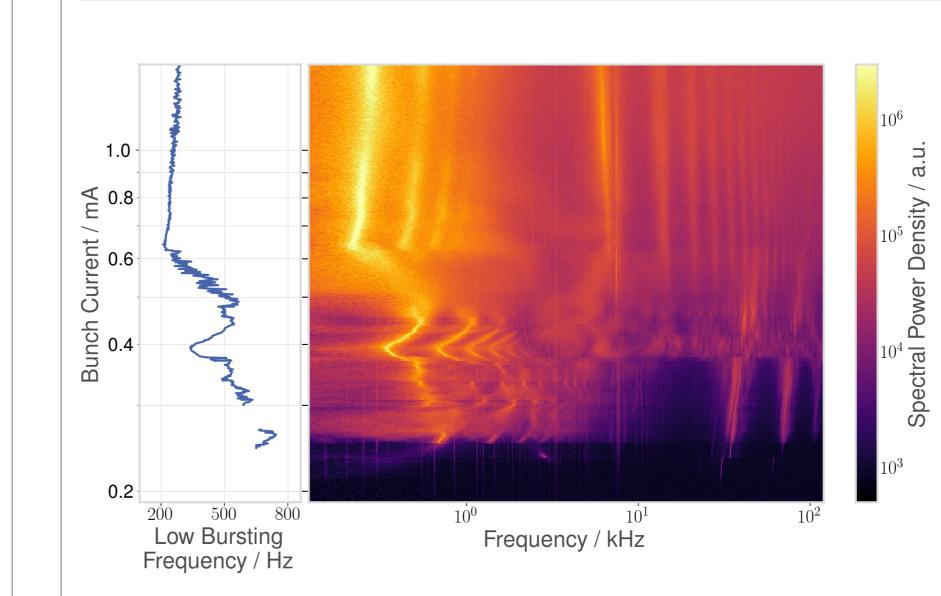
Motivation					
Challenge:	Method:	Goals of investigations:			
Micro-bunching instability due to Coherent Synchrotron Radiation (CSR) impedance	 2.5 2.0 2.0 2.0 Compensate optic changes due to wiggler 	Answer question: can a wiggler be used to			
CSR acts back on electrons	-1.5	Influence of damping time on the instability			

- \rightarrow Substructures in longitudinal charge density
- \rightarrow Bursts of CSR emission in THz frequency range $\stackrel{\scriptstyle{\scriptstyle{\sim}}}{=}$
- Instability depends on machine parameters

- Fast THz detectors
 - \rightarrow Resolve THz pulses with 2 ns spacing
- Multi-bunch acquisition system
- Precise bunch current measurement
- Innuence of damping time on the instability
- \rightarrow Threshold current
- \rightarrow Dominant fluctuation frequencies
- Crosscheck with Inovesa [1] (Vlasov-Fokker-Planck solver)


Fast THz detectors combined with KAPTURE

Zero-biased quasi-optical Schottky barrier diode


- Manufacturer: ACST GmbH
- Sensitivity range: 50 GHz - 2 THz
- Typical NEP: 6 pW/Hz^{1/2} @ 100 GHz 100 pW/Hz^{1/2} @ 1 THz • 4 GHz analog BW: Pulse FWHM: 130 ps

KAPTURE: KIT readout system [2]

- Simultaneous monitoring of all 184 buckets
- Continuous turn-by-turn read-out of each bucket (500 MHz) -> 32 Gb/s
- Four sampling channels with 12 bit ADC each
- Adjustable delay for each channel in 3 ps steps
- Local sampling rate up to 300 GS/s

Bunch current and frequency at instability threshold

Instability threshold not change by CLICDW, in agreement with Frequency at threshold also not

- Fluctuation in THz power due to additional potential
- \rightarrow convolution of wake function and bunch profile
- Low bursting frequency corresponds to periodicity of radiation outbursts
- During one burst the bunch length is blown-up and damped down again
- The frequency changes with bunch current due to changes in the bunch profile/length and thus in the interaction with the impedance

1		٨		<u> </u>		
	Property	A	В	C	D	E
h [4]	Bwig / T	0	0	$0\! ightarrow\!2$	2	2
ot	I _{th} / μΑ	$217{\pm}~3$	$213{\pm}~3$	215±2	-	220 ± 4

Measurement Results

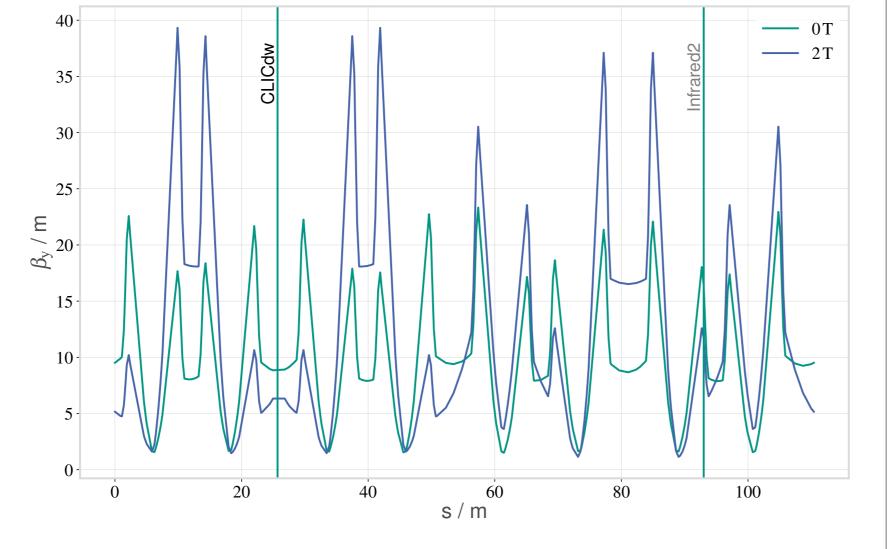
New possibilities in diagnostics

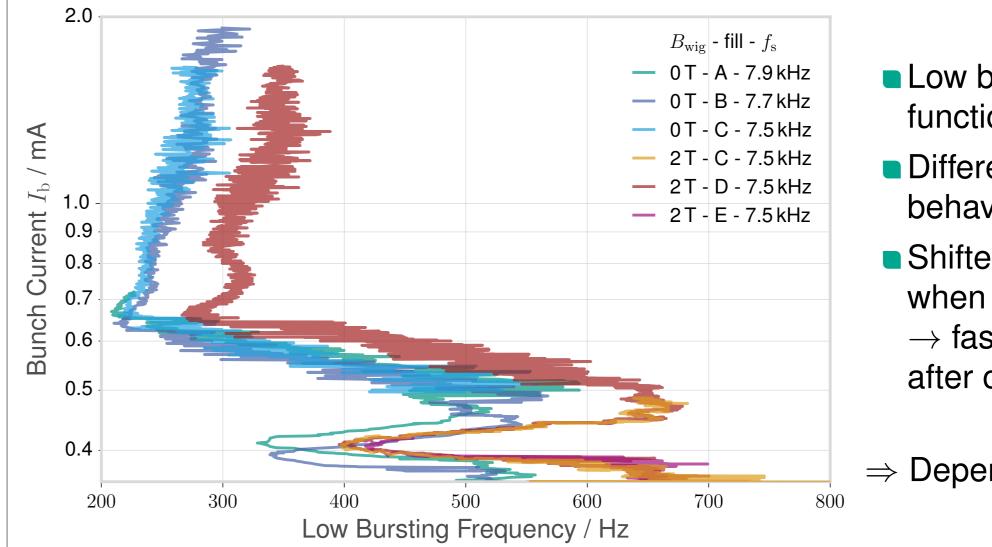
significantly changed by CLICDW f_{th} / kHz 30.9 \pm 0.3 30.1 \pm 0.3 29.6 \pm 0.3 29.7 ± 0.3

Low bursting frequency / repetition rate of radiation outbursts

KARA parameters

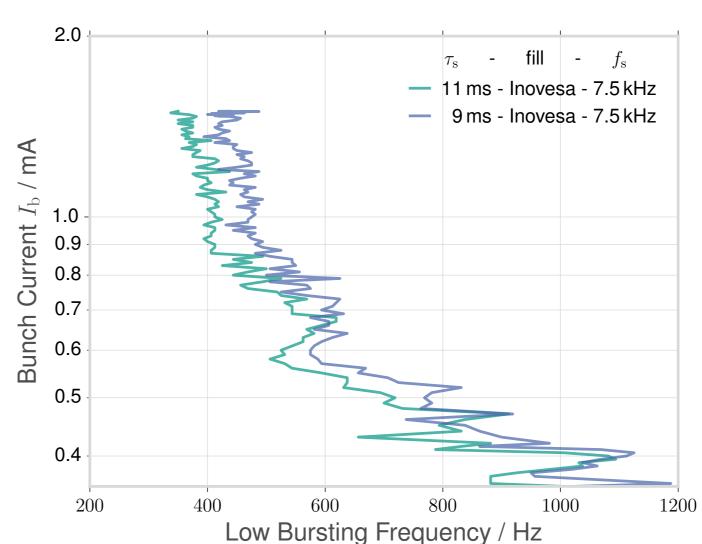
Parameter	Value
Energy / GeV	1.3
RF voltage / kV	771
Filling pattern	mixed currents
Synchrotron frequency / kHz	7.5, 7.7, 7.95
Horizontal tune	0.7863(1)
Vertical tune	0.7992(1)

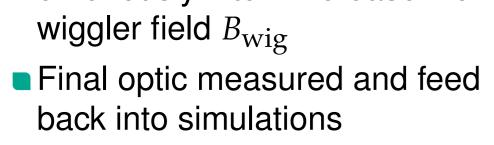

CDW


Parameter	Value
Magnetic field / T	2
Period length / mm	51.4
Full periods	36
Undulator parameter K	9.60

Superconducting wiggler Additional 20 % energy loss \Rightarrow faster damping

Optic adjustments


- 5 quadrupole families
- Beta beat minimized in elegant [3] simulations
- Quadrupole strength adjusted to simulated predictions
- Tunes compensated synchronously to increase of


- Low bursting frequency as function of bunch current
- Different fills show similar behavior
- Shifted to higher frequencies when CLICDW on
 - \rightarrow faster damping of bunch length after outburst
- \Rightarrow Dependent on damping time

Inovesa [1] Simulation Results

- Damping times from optics simulations $au_{s, no wiggler} = 11 \text{ ms} \rightarrow au_{s, wiggler} = 9 \text{ ms}$ as input for the Vlasov-Fokker-Planck solver
- No change in bunch current and frequency at instability threshold

$\tau_{\rm s}$ / ms	11	9
		0

$205 {\pm} 0.5$ $205 {\pm} 0.5$ $I_{\rm th}$ / μ A *f*_{th} / kHz 29.271±0.05 29.262±0.05

- Shift of low bursting frequencies to higher frequencies for shorter damping times
- \Rightarrow Damping time change shows qualitatively 1200similar effect in the simulation

Summary

• Changing damping time with CLIC damping wiggler prototype ($B_{wig} = 2 T$) at KARA Influence of damping time on key-properties of the micro-bunching instability studied No significant influence on bunch current and frequency at instability threshold Significant shift of low bursting frequency / periodicity of radiation outbursts

Poster presented at IPAC2018, Vancouver, THPAK029

- [1] P. Schönfeldt et al., Phys. Rev. Accel. Beams, 2017, Vol. 20, Nr.3.
- [2] M. Caselle et al., IPAC2014, Dresden, THPME113.
- [3] M. Borland, elegant: A Flexible SDDS-Compliant Code for Accelerator Simulation
- [4] K. L. F. Bane and Y. Cai and G. Stupakov, Phys. Rev. STAB, 2010, Vol. 13, Nr. 10.

* Miriam Brosi, Patrik Schönfeldt and Johannes Steinmann acknowledge the financial support by the Helmholtz International Research School for Teratronics (HIRST) ** Julian Gethmann acknowledges the support by the DFG-funded Doctoral School "Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology"

KIT – The Research University in the Helmholtz Association

