

CONTROL SYSTEM DESIGN FOR SRF CAVITIES BASED ON A KALMAN FILTER OBSERVER

Helmholtz-Zentrum Berlin Institute of SRF Science and Technology Dr. Andriy Ushakov

AGENDA

- 1. Why do we need advanced SRF cavity control?
- 2. Control concept using the Kalman Filter
- 3. Kalman Filter simulation and hardware implementation
- 4. Future plans

Beating of voltage at BESSY VSR caused by 3 cavities

- BESSY-VSR relies on exact synchronization of three (S)RF cavity systems
- The scheme itself has its inherent instabilities
- Any deviation in phase and amplitude will disturb the scheme →
 e.g. unwanted high current long bucket bunch shortening →
 increase loss of particles

VSR higher harmonic: Zero-crossing operation, with right tune highly unloaded system \rightarrow operation at high Q \rightarrow Narrow bandwidth \rightarrow Easily to disturb:

- Microphonics
- Dynamic Lorentz force detuning
- Highly mechanically resonant system

Let's demonstrate with a real example

Detuning influence to the cavity stability

Example: Gun 1.0 cavity of bERLinPro: Bandwidth 23 Hz

How do we usually handle this?

Mechanical properties of the cavity

B. Gustavsen and A. Semlyen, "Rational approximation of frequency domain responses by vector fitting", IEEE Trans. Power Delivery, vol. 14, no. 3

Lorentz force and mechanical vibrations region of interest

How control theory helps us to control cavity?

Control approaches used in accelerators

Modern control approaches

- Passive control: all kinds of mass damper, harmonic absorbers, shock absorbers
 - Isn't robust to any change of system parameters
 - Doesn't have any energy expenses
- Classical PID regulator
 - Amplifiers all outer disturbances and system intrinsic noises
 - · Requires additional energy pump
 - Requires parameters adjustment if conditions are varying

Main tone cancellation

- Sort of adaptive technique
- · Can adopt in the real-time
- Requires additional feedback regulator
- Not a feedforward approach

Feedforward control: LQR + Kalman observer

- Allows optimal control: reaction speed vs energy expenses
- · Based on the physical model of the system
- Doesn't require full set of parameters and thus less sensors
- · Feedforward approach allowing adjusting on the fly

Essence of control approaches

Robust to limited data about system!

How does Kalman Observer work?

What is a Kalman filter? Definition

- Rudolf Emil Kálmán (1930 2016) -Hungarian-born American electrical engineer, mathematician and inventor
 - 1961-1972, the Apollo Project.
 First trajectory estimator using Kalman Filter

R. E. Kalman, "A new approach to linear filtering and prediction problems", *Transactions of the ASME–Journal of Basic Engineering*, 82

• Applications: NASA Space shuttles, Navy submarines, unmanned aerospace vehicles

- Kalman Gain = K
- Error in the Measurement = E_{MEA}
- Error in the Estimate = E_{EST}

- Current Estimate = EST_t
- Previous Estimate = EST_{t-1}
- Measurement = *MEA*
- $EST_t = EST_{t-1} + K(MEA EST_{t-1})$

- If $K \to 0$, $EST_t = EST_{t-1}$
- If $K \to 1$, $EST_t = K \cdot MEA$

Michael van Biezen. http://www.ilectureonline.com/

Predicted state based on physical model and previous state

- $X \text{State matrix}_{(X_t, \dot{X}_{t-1})}$
- P Process covariance matrix (error in the estimate)
- K Kalman Gain
- R Sensor noise covariance matrix (measurement error)
- Y measurement of the state
- A, B, C adaptation matrixes

Forced harmonic oscillations for the case of Lorentz force $\Delta \dot{\omega(t)} + 2\varepsilon \omega \Delta \dot{\omega(t)} + \omega^2 \Delta \omega(t) = \pm k2\pi \omega^2 E_{ACC}^2$

Transition to the state-space representation $\Delta \dot{\omega(t)} = -2\varepsilon \omega \Delta \dot{\omega(t)} - \omega^2 \Delta \omega(t) \pm k2\pi \omega^2 E_{ACC}^2$

Matrix state-space representation

$$\begin{pmatrix} \Delta \dot{\omega(t)} \\ \Delta \dot{\omega(t)} \end{pmatrix} = \begin{pmatrix} -2\varepsilon\omega & -\omega^2 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \Delta \dot{\omega(t)} \\ \Delta \omega(t) \end{pmatrix} + \begin{pmatrix} \pm k2\pi\omega^2 \\ 0 \end{pmatrix} \cdot E_{ACC}^2$$

Discrete form of the state-space model

$$\begin{pmatrix} \Delta \dot{\omega(t)} \\ \Delta \omega(t) \end{pmatrix} = \begin{pmatrix} -2\varepsilon \omega \Delta t & -\omega^2 \Delta t \\ \Delta t & 1 \end{pmatrix} \cdot \begin{pmatrix} \Delta \dot{\omega} \\ \Delta \omega \end{pmatrix} + \begin{pmatrix} \pm k2\pi \omega^2 \\ 0 \end{pmatrix} \cdot E_{ACC}^2$$

$$\dot{\Delta \omega} = \frac{\Delta \dot{\omega}_t - \Delta \dot{\omega}_{t-1}}{\Delta t}; \ \dot{\Delta \omega} = \frac{\Delta \omega_t - \Delta \omega_{t-1}}{\Delta t}$$

$$\sum \Delta \omega = (0 \quad 1) \cdot \begin{pmatrix} \Delta \dot{\omega} \\ \Delta \omega \end{pmatrix}$$

Example of 2 mechanical modes

$$\sum \Delta \omega = (0 \quad 0.5 \quad 0 \quad 0.5) \cdot \begin{pmatrix} \Delta \dot{\omega}_1 \\ \Delta \omega_1 \\ \Delta \dot{\omega}_2 \\ \Delta \omega_2 \end{pmatrix}$$

- 2nd order Lorentz Force detuning • block describes up to 20 modes
- Individual noisy detuning of each ٠ mode generated
- Cavity field amplitude is generated

20 eigenmodes are detuned

KF reaction to 2 sources of uncertainty: cavity field and detuning

Both: Detuning and field amplitudes are extremely noisy!

Input: noisy detuning and amplitude

Result:

- Peak 100mHz difference \rightarrow 0,4°
- Guaranteed time for Kalman Filter to become stable is 0,6sec

KF reaction to not fully described system state

Kalman gain stabilization

System not fully described!

5 eigenmodes contribute to KF

Result:

- Kalman filter is able to work if the system is not fully described
- Introduction of new modes is possible and will be mitigated
- The good system identification is required

Complexity of mTCA development

unit, предоставленных Правятельством СССР,

аратнитрировано в Горударся 1 mondper 1988r . CHATETERSTER

Actual piezo drive frequency is limited by 300Hz at 6uF and 140Vpp 17

Testing hardware: cavity simulator + mTCA KF

control algorithms debugging"

Ideal Kalman Filter reaction slightly The initial error settings have differs from the data obtained from **mTCA HW**

influence on the proximity of the "real" produced curve to the "ideal"

- Reaction with some deviation from ideal.
- Stands intrinsic hardware noises: • attenuators, downconverters, not-scaled amplitude of field

Filter allows to find a sweet spot for the appropriate observation error

Input: cavity oscillation depends on 3 mechanical modes: 330, 460, 470 Hz

Mechanical modes contribution: 330 Hz - 20%; 460 Hz - 40%, 470 Hz - 40%

Kalman filter response consist of 3 modes. The tracking precision is within 0,1 %

-0.04

0

0.005

0.01

0.015

0.02

Time, sec

0.025

0.03

0.035

-230

-240

-250

-27

-280

-290

Detuning, Hz

elmholtz **Zentrum Berlin**

Future works:

- 1. Kalman filter test in CMTB facility DESY. Planned for December 2018 (thanks to Dr. Mathieu Omet and Dr. Julien Branlard)
- 2. Close the control loop with a real cavity
- 3. HZB "in house" mTCA firmware portfolio development related to the specific of our application
- 4. Transient beam loading control investigation by Kalman Filter

Thank you for your attention!