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AGENDA

1. Why do we need advanced SRF cavity control?

2. Control concept using the Kalman Filter

3. Kalman Filter simulation and hardware implementation

4. Future plans
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BESSY VSR scheme: the need for stable 

operation

Beating of voltage at BESSY VSR caused by 3 cavities

• BESSY-VSR relies on exact 

synchronization

of three (S)RF cavity systems

• The scheme itself has its inherent 

instabilities

• Any deviation in phase and amplitude 

will disturb the scheme 

e.g. unwanted high current long bucket 

bunch shortening 

increase loss of particles

VSR higher harmonic: Zero-crossing operation, with right tune highly unloaded

system  operation at high Q  Narrow bandwidth  Easily to disturb:

- Microphonics

- Dynamic Lorentz force detuning

- Highly mechanically resonant system

Let’s demonstrate with a real example



20 Hz peak detuning

Example: Gun 1.0 cavity of bERLinPro: Bandwidth 23 Hz 

𝑃forward =
𝑉cav
2

4
𝑅
𝑄
𝑄L

1 +
∆𝑓

𝑓1/2

2

Stability paid by RF 

power, is limited and

eventually not good

enough!

w/o beam-loading

Detuning influence to the cavity stability

Precise field control is 

required, e.g. below

0.01 deg. in phase, 

1e-4 relative amplitude
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Bessy VSR frequency

sweep by the

deformation is

700KHz/mm

• 𝑓1/2 =
𝑓0

2∙𝑄𝐿
= 15𝐻𝑧

• 20𝑛𝑚 → 45°

𝟏𝟔𝒏𝒎 0,2° pp phase error

x4 Power

How do we usually handle this?



5

How do we generally control this?

LLRF scheme

RF 

detectionDigital 

controller

Up

conversion

Tuner 

controller

 𝐴 sin 𝜔𝑡 +  𝜑

Amplifier

Circulator

𝐾 𝐴 + ∆𝐴 sin 𝜔𝑡 + ∆𝜑

∆𝑓
∆𝐴

∆𝜑

𝐴 sin 𝜔𝑡 + 𝜑

𝐴 + ∆𝐴 sin 𝜔𝑡 + ∆𝜑 Tuner

LLRF Vector

modulator

Master OSC

How do we describe the cavity behavior?

0°



Mechanical properties of the cavity
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Lorentz force and 

mechanical vibrations 

region of interest

Lock-in amplifier

Kl
ys

tr
on Phase Locked 

Loop

ΔΦ detuning

Fourier Analysis

Piezo drives + Blade tuner

 ∆𝜔𝑘 𝑡 + 2𝜀𝜔𝑚,𝑘
 ∆𝜔𝑘 𝑡 + 𝜔𝑚,𝑘

2 ∆𝜔𝑘 𝑡 =

±𝑘𝑘2𝜋𝜔𝑚,𝑘
2 𝐸𝑎𝑐𝑐

2 𝑡

∆𝜔𝑘 𝑡 = 

𝑘

∆𝜔𝑚,𝑘(𝑡)

How control theory helps us to control cavity?

B. Gustavsen and A. Semlyen, "Rational approximation of frequency domain 

responses by vector fitting", IEEE Trans. Power Delivery, vol. 14, no. 3



Modern control approaches Essence of control approaches
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Control approaches used in accelerators

• Passive control: all kinds of mass damper, 
harmonic absorbers, shock absorbers

• Isn’t robust to any change of system parameters

• Doesn’t have any energy expenses

• Classical PID regulator 
• Amplifiers all outer disturbances and system 

intrinsic noises

• Requires additional energy pump

• Requires parameters adjustment if conditions are 
varying

• Main tone cancellation
• Sort of adaptive technique

• Can adopt in the real-time

• Requires additional feedback regulator

• Not a feedforward approach

• Feedforward control: LQR + Kalman
observer

• Allows optimal control: reaction speed vs energy 
expenses

• Based on the physical model of the system

• Doesn’t require full set of parameters and thus less 
sensors

• Feedforward approach allowing adjusting on the fly

System

 =  +  
 =  +Du

Kalman 
Observer

 

Regulator

 =−  

u - input y - output

Adaptive to 
disturbances

Adaptive to 
noise

Robust to limited data about system!

How does Kalman Observer work?



What is a Kalman filter? Definition
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• Rudolf Emil Kálmán (1930 – 2016) -

Hungarian-born American electrical 

engineer, mathematician and inventor

• 1961-1972, the Apollo Project. 

First trajectory estimator using 

Kalman Filter

• Applications: NASA Space shuttles, Navy 

submarines, unmanned aerospace vehicles

Prediction

(Estimate)
Noisy measurement

Actual value

Kalman prediction

R. E. Kalman, “A new approach to linear 

filtering and prediction problems”, 

Transactions of the ASME–Journal of Basic 

Engineering, 82



The Kalman gain: a closer look

Measurements

are accurate

Estimates 

are unstable

KG

1
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0
Measurements

are inaccurate

Estimates 

are stable 

(small error)

1. Calculate the 
Kalman gain

Error in the 
measurement

Error in the 
estimate
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• Kalman Gain = 𝐾
• Error in the Measurement = 𝐸𝑀𝐸𝐴
• Error in the Estimate = 𝐸𝐸𝑆𝑇

• 𝐾 =
𝐸𝐸𝑆𝑇

𝐸𝐸𝑆𝑇+𝐸𝑀𝐸𝐴

• 0 < 𝐾 ≤ 1

• Current Estimate = 𝐸𝑆𝑇𝑡
• Previous Estimate = 𝐸𝑆𝑇𝑡−1
• Measurement = 𝑀𝐸𝐴
• 𝐸𝑆𝑇𝑡 = 𝐸𝑆𝑇𝑡−1 + 𝐾 𝑀𝐸𝐴 − 𝐸𝑆𝑇𝑡−1

• If 𝐾 → 0, 𝐸𝑆𝑇𝑡 = 𝐸𝑆𝑇𝑡−1
• If 𝐾 →1, 𝐸𝑆𝑇𝑡 = 𝐾 ∙ 𝑀𝐸𝐴



The multi-dimension matrix model

Initial state
X0

P0

Previous state
Xk-1

Pk-1

New state (predicted) 

Update with new measurement 
and Kalman gain

Measurement input
Current becomes previousOutput of 

updated state
Xk-1

Pk-1

Predicted state based on physical 

model and previous state
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Michael van Biezen. http://www.ilectureonline.com/



State-space model for several modes
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Cavity behavior model as the KF input
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• 2nd order Lorentz Force detuning 

block describes up to 20 modes

• Individual noisy detuning of each 

mode generated

• Cavity field amplitude is generated

Lets test Kalman filter response under different input noises!



KF response to 20 noisy eigenmodes
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20 eigenmodes are detuned

Noisy input (20 modes)

Detuning using Kalman

Noiseless detuning

SNR=4,2dB Peak 10mHz difference → 0,04°



KF reaction to 2 sources of uncertainty: cavity 

field and detuning

Kalman Gain stabilisation

Kalman filter reaction to the input noise
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Both: Detuning and field amplitudes are extremely noisy!

Input: noisy detuning and amplitude

SNR=20,1dB

Result:

• Peak 100mHz difference → 0,4°

• Guaranteed time for Kalman Filter to 

become stable is 0,6sec

Kalman Gain stable →

filter converge to the 

actual behavior

Guarantied time to stabilize 

is ≈ 0.6 sec
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KF reaction to not fully described system state 

Input detuning

Kalman gain stabilization
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System not fully described!

Result:

• Kalman filter is 

able to work if the 

system is not 

fully described

• Introduction of 

new modes is 

possible and will 

be mitigated

• The good system 

identification is 

required
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5 eigenmodes contribute to KF



Complexity of mTCA development

Iforward Qforward Itransmitted Qtransmitted

Initial state
X0

P0

Previous state
Xk-1

Pk-1

New state (predicted) 

Update with new measurement 
and Kalman gain

Measurement input
Current becomes previousOutput of 

updated state
Xk-1

Pk-1

AMW filter 
Input rate 9Msps

Output rate 588Ksps

AMW filter 
Input rate 9Msps

Output rate 588Ksps

AMW filter 
Input rate 9Msps

Output rate 588Ksps

AMW filter 
Input rate 9Msps

Output rate 588Ksps

Complexities and developments:

• Floating point library developed

• Matrix operations library developed

• Detuning and field calculation math

• Additional average moving window filters

FPGA firmware characteristics:

• Maximum processing rate 500Msps

• Able to process up to 1000 eigenmodes

• Actual piezo drive frequency is limited by 
300Hz at 6uF and 140Vpp 17



Testing hardware: cavity simulator + mTCA KF

Tr
an

sm
it

te
d

Splitter

Fo
rw

ar
d

RF

LO

IF

8 input channels of 
attenuators/mixers

Vector modulator

Analog signals
Zone 3 connector

10 125MHz 16-bit ADCs

Downconverter
DWC8VM1 RTM

Digitizer
SIS8300L2 AMC

   ADC

   DAC

Virtex 6 FPGA

2 DACs

Field 
detection

Average 
Moving 
Window

Detuning 
Field 

Calculation

Kalman 
filter

Lower sideband FIF=1,354-1,3GHz=54MHz

1st Nyquist image

AFW

ATR
QTR

QFW

ITR IFW

Re

Im

φFW 
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• IPAC 2018. “Developing Kalman Filter Based 

Detuning Control with a Digital SRF CW Cavity 

Simulator”

• IPAC 2017. “Detuning Compensation in SC 

Cavities Using Kalman Filters”

• Review of Scientific Instruments 89. 

“Superconducting radio-frequency virtual cavity for 

control algorithms debugging”



Lessons learned

Ideal Kalman Filter reaction slightly 

differs from the data obtained from 

mTCA HW

The initial error settings have 

influence on the proximity of the 

“real” produced curve to the “ideal”
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• Reaction with some deviation from ideal. 

• Stands intrinsic hardware noises: 

attenuators, downconverters, 

not-scaled amplitude of field

• Filter allows to find a sweet spot for the 

appropriate observation error
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KF response real-time examination
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Input: cavity oscillation depends on 3 mechanical modes: 

330, 460, 470 Hz

Mechanical modes contribution: 

330 Hz – 20%; 460 Hz – 40%, 470 Hz – 40%

Kalman filter response consist of 3 modes. 

The tracking precision is within 0,1 %



Kalman filter response to the rapid beam change
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e.g. 1mbar pressure change in

LHe system or non-synchronized

Beam injection into BESSY II

Df=30 Hz

Kalman filter reacts to the 

stiff transition with 2µs delay.

Keeps tracking within 2% of 

error



1. Kalman filter test in CMTB facility DESY. Planned for 

December 2018 (thanks to Dr. Mathieu Omet and 

Dr. Julien Branlard)

2. Close the control loop with a real cavity

3. HZB “in house” mTCA firmware portfolio development 

related to the specific of our application

4. Transient beam loading control investigation by Kalman

Filter

Future plans
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Future works:
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Thank you for your attention!


