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Why vacuum in accelerators?

• Avoid high voltage break downs in accelerating structures (and high intensity 
lasers)

• Thermal isolation of cryogenic equipment

• Increase lifetime of photocathodes

• Stabilization of laser transport

• Contamination protection of optics
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Why vacuum in accelerators?
• Collision of beam particles with residual gas have to be minimized, or

• Loss of particles
• Shorter lifetime
• Damage of beamline components
• Higher background in detectors
• Higher activation of beamline components → risk of personal safety

• Degradation of beam quality
• Emittance growth
• Reduced luminosity

• Higher Bremsstrahlung
• Energy loss of primary particles
• Damage of components
• Risk of personal safety

• Some examples discussed on the next slides
|6th ARD ST3 workshop| S. Lederer "Vacuum for accelerators"
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Why vacuum in accelerators?

• Based on Rutherford scattering cross
section (in cgs units)

σ
Ω

1
16

∙ ∙
∙ ∙ ∙

1
θ
2

z·e:= charge of the incident particle

Z·e:= charge of the target

θ:= scattering angle
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Elastic (coulomb) scattering from residual gas
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Why vacuum in accelerators?

• Beam lifetime (for storage rings) τes

• Particles will be lost if the scattering 
angle exceeds the physical 
acceptance (apertures of vacuum 
chambers)

τ 2839
1

∑ ∑
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Elastic (coulomb) scattering from residual gas

• to increase beam lifetime

• Increase energy

• Increase aperture

• Decrease pressure

• Avoid heavy nuclei

• Avoid long chain molecules

„Vacuum Electronics“, Springer-Verlag Berlin Heidelberg, 2008.

aperture

Average β-function pressure

Number of atoms with Z in the molecule
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Why vacuum in accelerators?

• Beam particles lose energy by 
emission of radiation in collisions with 
nuclei and electrons

• If energy loss is larger than 
acceptance (δE=∆E/E0) the particle 
will be lost

• Inelastic cross section σ

σ
4
3

1
δ

• Vn:= 22.4 l/mol

• X0:= radiation length
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Inelastic scattering (Bremsstrahlung)

• 4 /

• Beam lifetime:

τ
0.695
δ ,

• Watch out for pressure and Z!

„Particle accelerator physics”, H. Wiedemann, Springer-
Verlag Berlin Heidelberg, 2007

„Vacuum Electronics“, Springer-Verlag Berlin Heidelberg, 2008.



Basic theory of gases
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Basic theory of gases

• ISO 3529/1

• „A commonly used term to describe the 
state of a rarefied gas or the 
environment corresponding to such a 
state, associated with a pressure or a 
mass density below the prevailing 
atmospheric level.“

• DIN 28400/1

• If the pressure of a gas is smaller than 
300 mbar and so smaller as the lowest 
atmospheric pressure on the surface of 
the earth.
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What is vacuum?

• Pressure = force per area

•

• SI unit: Pa = N·m-2

• Common in accelerator technique 
mbar and Torr

Pa bar mbar Torr

Pa 1 10-5 10-2 7.5·10-3

bar 105 1 1000 750

mbar 100 10-3 1 0.75

Torr 133 1.33·10-3 1.33 1
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Basic theory of gases

• Pressure ranges for the main accelerators at DESY (SRF-modules excluded)
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10-10 – 10-8 mbar

10-11 – 10-7 mbar

10-11 – 10-7 mbar10-11 – 10-7 mbar

10-10 – 10-8 mbar
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Basic theory of gases

• Properties of gases

• Pressure (p), temperature (T), mass
(m), number of particles (N)

• Boltzmann constant

1.38064852 ∙ 10
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• Assumptions for following basics

• The gas volume under consideration
contains a large number of molecules

• Adjacent molecules are separated by a
distance larger than their diameter

• All molecules are in a state of
movement

• No forces between molecules except
during collisions
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Basic theory of gases

• Boyle’s Law

Pressure varies inversely with volume

∙ ∙ (N and T constant)

• Amonton’s Law

Pressure varies with temperature

(N and V const.)

• Charles’ Law

Volume varies with temperature

(N and P const.)
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• Dalton’s law

In a gas mixture the pressure is the 
same as the sum of all partial 
pressures

⋯

• Avogadro‘s law

Pressure proportional to number of 
molecules

	 (T and V const.)
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Basic theory of gases

• Combining Boyle‘s and Charle‘s law yields general gas law

• Ideal gas law

∙ ∙ ∙

• Relates gas quantity units

• N:= number of molecules, pV:= pressure volume units, e.g. mbar·l

•

• 1.38064852 ∙ 10 1.38064852 ∙ 10 ∙ 1.38064852 ∙ 10 ∙

• At room temperature (296 K): 2.4 ∙ 10 ∙
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Basic theory of gases

• Molecules underlay the Maxwell-
Boltzmann distribution

•
⁄ ∙

• Peak velocity:

• Mean velocity:
∙

• rms velocity:

|6th ARD ST3 workshop| S. Lederer "Vacuum for accelerators"

Velocity distribution

rms velocity vrms

mean velocity v

dn
/d

v

v

peak velocity vp
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Basic theory of gases

• Air for different temperatures
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Velocity distribution

• Different molecules at 20 °C
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Basic theory of gases

• Mean path before a gas particle
collides with another one

• λ
∙
∙ ∙

• dmol:=diamter of the molecule [m]

• n:=gas density = p/kBT

→ λ ∙
∙ ∙ ∙

• For air @ 20°C: λ 	0.0067/	p mbar
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Mean free path

“Micro and Nano Fabrication”, H.H. Gatzen et al., Springer-Verlag
Berlin Heidelberg 2015

p [mbar] 1000 1 1E-3 1E-6 1E-9

λ 67 nm 67 μm 67 mm 67 m 67 km



Flow of gases
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Flow of gases

• Flow of gases in a vacuum system divided into three regimes which are defined 
by a dimensionless number – Knudsen number Kn

λ

λ:= mean free path

d:= characteristic dimension of the channel (e.g. pipe diameter)

|6th ARD ST3 workshop| S. Lederer "Vacuum for accelerators"

Flow regimes

Continuous / viscous flow:
Characterized by molecule-
molecule collisions

Molecular flow:
Characterized by molecule-wall 
collisions

Pfeiffer vacuum
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Flow of gases

• Continuous / viscous flow can be either turbulent or laminar

• Defined by dimensionless number – Reynolds’ number, R
∙ ∙
η

U:= stream velocity; ρ:= gas density

d:= pipe diameter; η:= viscosity

• R < 1200 : laminar flow (zero flow velocity at wall)

• R > 2200 : turbulent flow

|6th ARD ST3 workshop| S. Lederer "Vacuum for accelerators"

Flow regimes
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Flow of gases

• Throughput is the quantity of gas, so the volume of gas at known pressure, 
passing a plane in a known time

∙

• The flow of gas in a pipe (or duct) depends on the pressure difference as well as 
the connection geometry.

• Throughput divided by pressure difference at constant temperature yields 
conductance C

|6th ARD ST3 workshop| S. Lederer "Vacuum for accelerators"

Throughput (Q), Conductance (C), Pumping speed (S) 

p2 (>p1) p1

Q
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Flow of gases

• Pumping speed (S) of a vacuum pump is defined as the volumetric displacement 
rate

• Relation between throughput, pumping speed and pressure (at the inlet of the 
pump)

|6th ARD ST3 workshop| S. Lederer "Vacuum for accelerators"

Throughput (Q), Conductance (C), Pumping speed (S)
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Flow of gases

• Orifices
• Extremely complicated
• Depends usually on inlet (p1) and outlet (p2) pressure and

geometry
• Throughput increases with decreasing outlet pressure
• Exception: critical or choked flow

• Gas stream speed exceeds speed of sound
• Further reduction of the outlet pressure does not further

increase the flow

• For air at 22 °C the choked-flow limit is 0.52

• Choked-flow important when describing flow restrictors
or small leaks to atmosphere

|6th ARD ST3 workshop| S. Lederer "Vacuum for accelerators"

Conductance - Continuum flow

“A User’s Guide to Vacuum Technology”, J. 
F. O’Hanlon, John Wiley & Sons, Inc., 2003.

p1
p2

(< p1)
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Flow of gases

• Orifices (with area A)

4

• With 
∙

as we know, we get

36.24

• For example N2 at 22 °C:

118 ∙

11.8 ∙
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Conductance - Molecular flow

• Long round tubes (diameter d, length l, l>>d)

12

• With 
∙

as we know, we get

37.94

• For example N2 at 22 °C:

123 ∙

12.3 ∙
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Flow of gases

• Short round tube

• Taking the conductance for long round
tubes and decreasing the 
length to zero would yield an infinite 
conductance

• On the other hand for an
orifice, which in fact is a tube with zero 
length

• Solution by Clausing

• , with α being the transition
probability that a molecule entering 
the pipe will leave it at the other end

|6th ARD ST3 workshop| S. Lederer "Vacuum for accelerators"

Conductance - Molecular flow

• For orifices: 1

• For long round tubes: ⁄ yielding

• Tabulated values for α:

“A User’s Guide to Vacuum Technology”, J. 
F. O’Hanlon, John Wiley & Sons, Inc., 2003.
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Flow of gases

• Conductances in series

• For example:

1 1

|6th ARD ST3 workshop| S. Lederer "Vacuum for accelerators"

Conductance combination

• Conductances in parallel

• For example:

C1 C2 C3
Vacuum 
chamber pump

Vacuum 
chamber

pump

C1

C2

C3
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Flow of gases

• Effective pumping speed

• Connecting a pump via a pipe to the 
vacuum chamber

1 1 1

|6th ARD ST3 workshop| S. Lederer "Vacuum for accelerators"

Conductance combination

• Example: A pump with S=100 l/s for 
N2 is connected via a pipe with d=6 
cm and l=12 cm to a vacuum 
chamber.

• 11.8 ∙ ∙ 6 ⁄

• l/d = 2 → α = 0.35658

• 54	 ⁄

CVacuum 
chamber

pump
S

Seff



Gas sources
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Gas sources 

• Residual gas from atmosphere

• Does not play a role for UHV systems

• Gas injection

• Is usually well controlled

• Leaks, virtual and real ones

• Have to be avoided 

• Main gas sources in UHV accelerator vacuum systems:

• Thermal outgassing

• Photon, electron, ion stimulated desorption

• Permeation 
|6th ARD ST3 workshop| S. Lederer "Vacuum for accelerators"
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Gas sources

• Real leaks – open connection 
between inside of vacuum vessel to 
outside → composition of the 
residual gas as air

• Leak rate QL

• Measured by special devices (leak 
detectors, mass spectrometer) and a 
tracer gas, which usually is helium

|6th ARD ST3 workshop| S. Lederer "Vacuum for accelerators"

Leaks

What we aim for

Leybold, „Fundamentals of vacuum technology“
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Gas sources

• Virtual leaks

• No open connection between inside of 
vacuum vessel to outside

• But residual gas composition 
comparable to air

• Trapped volume inside the vacuum 
vessel with only a tiny (low 
conductance) connection to the inside

|6th ARD ST3 workshop| S. Lederer "Vacuum for accelerators"

Leaks

• Reasons are often

• Improper weld seams 

• Screw connections inside vacuum

• To be avoided already in the design phase

• If possible welding at the inside of the 
vacuum vessel. If this is not possible 
weld seam has to go through the 
whole material. Never welding from 
both sides.

• Only vented screws inside of vacuum, 
e.g. a whole through the screw or 
thread flattened slightly on one side

• …
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Gas sources

• Thermal desorption or thermal 
outgassing means

• Molecules adsorbed on the surface 
(initially or after venting the vacuum 
system) desorbing when chamber is 
pumped

• Molecules diffuse from the bulk of the 
vacuum chamber material towards the 
surface and desorb there

• Thermal outgassing rate depends on 
several factors

• Material, surface finish, cleaning 
procedure, history of the material, 
temperature, pump time, venting gas,…

|6th ARD ST3 workshop| S. Lederer "Vacuum for accelerators"

Thermal desorption
Vacuum chamber wall

airvacuum
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Gas sources
• UHV-compatible and –incompatible materials, 

from the DESY vacuum specification

|6th ARD ST3 workshop| S. Lederer "Vacuum for accelerators"

Thermal desorption

• Besides the outgassing properties in 
accelerators a second property is 
important: radiation hardness!

• For instance Teflon is vacuum 
compatible but not radiation hard and 
therefore forbidden in accelerator 
vacuum systems.
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Gas sources

• Specific desorption rate 		 ∙
∙

• Methods to reduce thermal desorption 
rate
• Only use vacuum compatible materials
• Polishing of surfaces → reduction of 

surface
• Cleaning, clean handling (never touch a 

vacuum surface without gloves)
• Typical outgassing rate of a fingerprint 

is 10-5 mbar·l/s 
• In-vacuum bakeout → drastically reduces 

H2O outgassing, removes hydrocarbons
• …

|6th ARD ST3 workshop| S. Lederer "Vacuum for accelerators"

Thermal desorption

• Examples of thermal outgassing rates 
at room temperature after 1 hour in 
vacuum
Material

	
∙

∙

Aluminium (fresh) 9·10-9

Aluminium (after bakeout 20 h @ 100 °C) 5·10-14

Stainless steel 304 2·10-8

Stainless steel 304 (electropolished) 6·10-9

Stainless steel 304 (electropolished, 30 h 
@ 250 °C)

4·10-12
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Gas sources

• One of the most important gas
sources in the presence of
synchrotron radiation (SR)

• When and where photoelectrons
leave or arrive surfaces they may
desorb molecules

|6th ARD ST3 workshop| S. Lederer "Vacuum for accelerators"

Photon stimulated desorption (PSD)

• As thermal desorption PSD depends
on:

• Material, cleaning procedure, history of
the material, temperature, pumping
time

• In addition it depends on

• Energy of the impinging photons

• Photon flux

• Integral photon dose
Courtesy E. Al-Dmour, CAS, 2017.
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Gas sources

• Photon desorption yield

η
	 	 	

	 	 	 	 	

• Conditioning: photon desorption yield 
decreases with accumulated dose D

η η ,

• sometimes the conditioning is called “bakeout
with beam”

• Conditioning is required after each venting in 
storage rings because PSD usually prevents 
from full beam current operation

|6th ARD ST3 workshop| S. Lederer "Vacuum for accelerators"

Photon stimulated desorption (PSD) A. Mathewson, AIP Conf. Proc. 236(1), 313, 1991.



Gas removal 
(Pumps)

|6th ARD ST3 workshop| S. Lederer "Vacuum for accelerators" Leybold, “Fundamentals of Vacuum Technology”
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Gas removal (pumps)
• Momentum transfer pump

• Compresses gas from the inlet to the outlet

• Pumping speed

• constant over wider pressure range
• Mainly independent of molecular mass

• Can evacuate large amounts of gas

• Requires backing (fore-vacuum pump)

• Con’s:

• Not maintenance free
• Moving parts → vibrations
• Valves required to avoid venting in case of

failure

Turbo molecular pumps (TMP)

|6th ARD ST3 workshop| S. Lederer "Vacuum for accelerators"

Pfeiffer vacuum
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Gas removal (pumps)

• Gas molecules are ionized in one of the 
penning cells by electron impact 
ionization

• Ions are accelerated towards the 
cathode (usually titanium) and sputter 
the cathode material, which condenses 
on the anodes and second cathode

• Pumping mechanisms

• Implantation
• Chemical reaction of active gases with 

titanium
• Burial by the sputtered material

|6th ARD ST3 workshop| S. Lederer "Vacuum for accelerators"

Sputter ion pump (SIP)

Curtesy Agilent vacuum technology

Kimo M. Welch, “Capture Pumping Technology”, 2nd fully revised edition

Leybold, “Fundamentals of vacuum technology”
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Gas removal (pumps)

• Pro’s

• Current generated by ions can be 
utilized for pressure readout

• Very reliable – only high voltage 
needed for operation

• Maintenance free

• No moving parts – no vibrations

|6th ARD ST3 workshop| S. Lederer "Vacuum for accelerators"

Sputter ion pump (SIP)

• Con’s

• Influence of the magnetic stray field has to 
be taken into account during design of the 
vacuum system

• Problems with noble gases (lower 
pumping speed and noble gas instability)

• Noble diode pumps (second cathode 
made of tantalum instead of titanium) 

• better pumping speed for noble 
gases but lower for active gases 

• Less affected by instability

• Generate particles (dust) over time
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Gas removal (pumps)
• Utilizes the high reactivity of titanium

• Reactive gases are pumped by chemical 
reactions with the titanium
• O: forms with titanium TixOy

• N: forms with titanium TixNy

• CO, CO2, …
• Exception is hydrogen

• Atomic hydrogen diffuses into the 
titanium

• H2 cracks at the surface into atomic 
hydrogen which then diffuses into the 
titanium

• No pumping of inactive gases like noble 
gases, methane CH4 very slowly

|6th ARD ST3 workshop| S. Lederer "Vacuum for accelerators"

Titan sublimation pumps (TSP)

• Big titanium area yields high 
pumping speed

• Titanium wires are heated to 
evaporate titanium which 
condenses on surfaces

Titanium sublimation cartridge user manual; Agilent 
Technologies
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Gas removal (pumps)

• Pumping speed / 1000 ∙

• A:= area, v:= speed of molecules, s:= 
sticking coefficient

|6th ARD ST3 workshop| S. Lederer "Vacuum for accelerators"

Titan sublimation pumps (TSP)

• Pro’s
• High pumping speed for active gases
• After activation no media required for 

operation, until saturation
• Usually at DESY accelerators weeks or 

months in-between activations

• Con’s
• During activation high pressure rises 

which usually prevent from machine 
operation

• No pumping of inactive gases
• During activation creation of methane 
• Require backing pump (usually sputter ion 

pumps)

“A User’s Guide to Vacuum Technology”, J. F. O’Hanlon, John Wiley & Sons, Inc., 2003.
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Gas removal (pumps)

• Sorb active gases by chemical reaction

• Porous alloys with very large active metallic (Ti, Zr,) surface after activation

• Pumping principles

• Reactive gases like O2, N2, CO, CO2 – adsorbed irreversibly, formation of oxides, 
nitrides, carbides,…

• H2 – adsorbed reversibly, diffusion into bulk

• H2O, hydrocarbons – adsorbed in a combination of irreversibly and reversibly

• Hydrocarbons adsorbed very slowly

• Noble gases – not pumped at all 

Non-evaporable getter pumps (NEG)

|6th ARD ST3 workshop| S. Lederer "Vacuum for accelerators"



Page 43

Gas removal (pumps)

• Activation of the NEG

• If no active sides on the surface are left the NEG has to be activated

• Activation at high temperatures (depending on the NEG alloy)

• Oxides, nitrides and carbides do not crack but diffuse into the bulk

• Since the activation is a diffusion process it depends:

• exponentially on temperature

• Square root of time

• Lower temperature can be compensated by increases time

• E.g. 1 h @ 450 °C ≈ 4 h @ 400 °C ≈ 24 h @ 350 °C

Non-evaporable getter pumps (NEG)

|6th ARD ST3 workshop| S. Lederer "Vacuum for accelerators"
Courtesy SAES getters
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Gas removal (pumps)

|6th ARD ST3 workshop| S. Lederer "Vacuum for accelerators"

Non-evaporable getter pumps (NEG)

Ready to use plain NEG pumps up to 3500 l/s

Cartridges or even only pellets to build your 
own pump

Ready to use in combination with SIP

As thin film on a vacuum chamber

O.B. Malyshev, R. Valizadeh, J.S. Colligon
et al . J. Vac. Sci. & Technol. A 27 (2009), 
p. 521.
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Gas removal (pumps)

• The flexibility in cartridge designs gives great possibilities in accelerators with 
high magnet density (storage rings), so small space for pumps – the 
antechamber concept

|6th ARD ST3 workshop| S. Lederer "Vacuum for accelerators"

Non-evaporable getter pumps (NEG)

Cooling channel

Cooling channel

Ante-chamber 
with NEG stripe

PETRA III dipole chamber
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Gas removal (pumps)

• Thin films

• Whole chamber is coated by NEG (≈1μm)

• Activation by heating the chamber for 24 h @ 
190 degC (NEG = TiZrV)

• Easy for a vacuum chamber but really hard 
for a magnet!

• Highest pumping if film is columnar (big surface 
area), but

• NEG acts also as barrier and best if film is 
dense

• So, from simple vacuum point of view a 
combination of dense and columnar NEG 
should be best

|6th ARD ST3 workshop| S. Lederer "Vacuum for accelerators"

Non-evaporable getter pumps (NEG)

O.B. Malyshev, R. Valizadeh, A.N. Hannah, J. Vac. Sci. & Technol. A 
34 (2016), p. 061602.
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Gas removal (pumps)

• Thin films

• Extremely elegant method for reducing the pressure in the accelerator, but

• Activation very complicated because of the usually close magnets

• Application for FEL’s like the European XFEL not possible because of beam dynamics 
requirement 

• Roughness and conductivity mess up impedance budget

|6th ARD ST3 workshop| S. Lederer "Vacuum for accelerators"

Non-evaporable getter pumps (NEG)



Residual gas analysis
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Residual gas analysis
• Residual gas analysis

• Detector for helium leak checks

• Online monitor of vacuum systems, early
leak detection during operation

• If in an accelerator the pressure rises and the
RGA shows an increased signal for Argon, w/o
gas injection, most probable a leak to air
occurred.

• Most commonly used in vacuum technique
are quadrupole mass spectrometers

• Inexpensive

• Compact

• But poor mass resolution

|6th ARD ST3 workshop| S. Lederer "Vacuum for accelerators"
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Residual gas analysis
Quadrupole mass spectrometer

• After ionization all ions travel through the 
same electric potentials

• On the quadrupole rods a voltage U is applied, 
which is superimposed by a alternating 
voltage with changeable amplitude V

• In simplest words one of the rod pairs acts as 
high pass the other as low pass filter for ions 
with a mass to charge ratio M=m/q 
• For each V only one M can pass through the 

quadrupole
• By changing V a mass scan can be performed

|6th ARD ST3 workshop| S. Lederer "Vacuum for accelerators"
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Residual gas analysis

Interpretation of mass spectra

• Things that make life complicated but 
also can help

• Cracking / fragmentation  of molecules in 
the ion source (see example)

• Very helpful to identify molecules with 
the same m/q, e.g. CO and N2

• Different ionization cross sections of the 
molecules

• Multiple ionization in the ion source (see 
example)

• Isotopes (e.g. 12C and 13C in the example)

|6th ARD ST3 workshop| S. Lederer "Vacuum for accelerators"

Courtesy Pfeiffer vacuum
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Residual gas analysis

• Perfect tool for quality assurance of vacuum 
components

• As discussed in the beginning: try to avoid 
high Z and molecules with high number of 
atoms (e.g. long chain hydrocarbons)

• DESY vacuum specification for hydrocarbon 
cleanliness

• At a pressure below 1·10-7 mbar the sum of all 
partial pressures with m/q > 44 has to be smaller 
than 1 per mille of the total pressure.

• Only components compliant to the specification 
will be installed

|6th ARD ST3 workshop| S. Lederer "Vacuum for accelerators"
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Example of a component not 
compliant to the DESY vacuum 
specification

Example of a component compliant 
to the DESY vacuum specification



Thanks for your 
attention
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