

HZB Facility Report

Paul Goslawski et al.
Institute for Accelerator Physics
Helmholtz-Zentrum Berlin

on behalf of

- Institute for Accelerator Physics
- Institute for SRF, Science and Technology
- Division for Accelerator Operation
- T ...

HZB Facilities for Synchrotron Radiation

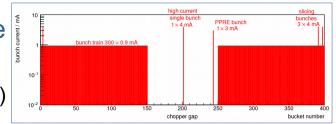
BESSY I

E = 200 – 800 MeV C = 60 m EUV, soft X-ray end of operation 1998, now injector for Sesame

BESSY III

HZB and strategic partners

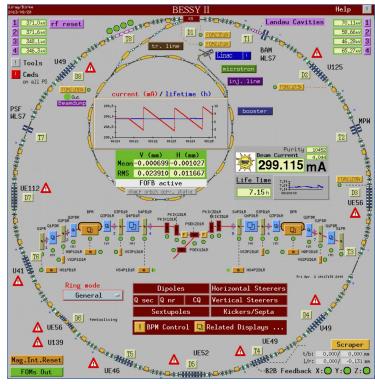
(PTB, FU-, TU-, HU- Berlin, MPG, FHI, ...)


- BESSY II / VSR, MLS syn. rad. sources
- bERLinPro test facility
- SupraLab@HZB Lab for SC Acc. comp.
- · Proton therapy with Charité
- Research Reactor BER II

BESSY II - Synchrotron Radiation User Facility

BESSY II, 3rd generation light source, DBA lattice

• 1.7 GeV, EUV – soft X-ray, 100 eV – 1 keV – 20 keV, 240m, ϵ_x =5nm rad, σ_0 =15ps, beamlines 22,20 (ID, Bend)



- Special features, special focus:
 - Spectroscopy & Timing experiment community: Pump-Probe, TOF, Coincidence
 - Low alpha for stable THz, FemtoSlicing, Advanced fill pattern, SB & FB mode (1MHz - 10 MHz)
 - Bunch separation Schemes: MHz Chopper, PPRE

FEMTOSPEX - Magnetism, Molecules and Surfaces, Scattering LiquidFlexRIXS, MAXYMUS, Resonant Scattering, SPEEM, XPP SolidFlexRIXS, THZ spectroscopy and EPR, Transmission NEXAFS

- **0) Maintaining & Improving BESSY II** EMIL, WLS refurbishement, TRIBs, ...
- BESSY VSR Variable Pulse Length Storage Ring Short and long bunches simultaneously
- 2) TRIBs Transverse Resonance Island Buckets
 Two synchrotron radiation sources in one ring

 BESSY III - Future storage ring (DLSR) based radiation source optimized for timing experiments (DLSR + VSR + TRIBs)

PTB's MLS - Metrology Light Source

- MLS Machine for non-linear beam dynamic studies and more
 - Primary Target: Metrology in the
 UV EUV range, user facility, industry cooperation
 - Highly automated operation, ramped machine
 - User mode, low-α, low-ε, single electron, ...
 - Secondary Target: optimised for non-linear beam dynamic studies in longitudinal as well as in transverse plane → test bed for Acc. Phys.
 - low-α operation, THz generation, CSR studies,
 α-buckets, bunch length limits,
 negative low α-operation,
 SSMB project with Tsinghua Univ., PTB, SLAC

60th ICFA Advanced Beam Dynamics Workshop on Future Light Sources ISBN: 978-3-95450-206-6

FLS2018, Shanghai, China JACoW Publishing doi:10.18429/JACoW-FLS2018-THP2WB02

CASTIGNS

AN OVERVIEW OF THE PROGRESS ON SSMB

Chuanxiang Tang*, Xiujie Deng[†], Wenhui Huang, Tenghui Rui,

- Transverse Resonance Island Buckets, TRIBs
- R&D project: Robinson Wiggler

parameters	
Energy	50 630 MeV
Circumference	48 m
Horizontal emittance	100 nm rad
Beam current	200 mA
RF frequency	500 MHz
max. RF voltage	0.5 MV
Bunch length low-α	20 ps 1 ps
Mom. Comp. low-α	$(-37) \times 10^{-2}$ 1.3×10^{-4}

HZB Facilities for Synchrotron Radiation

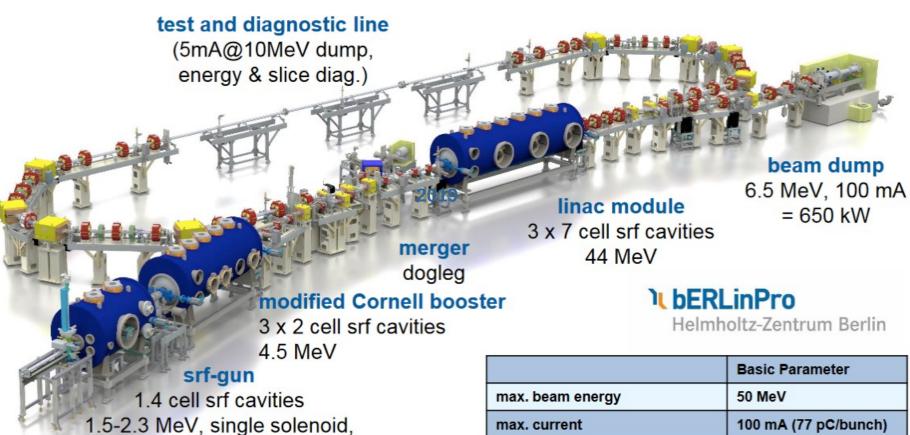
BESSY I

E = 200 - 800 MeVC = 60 mEUV, soft X-ray now injector for Sesame

BESSY II

HZB and strategic partners

(PTB, FU-, TU-, HU- Berlin, MPG, FHI, ...)


- BESSY II / VSR, MLS syn. rad. sources
- **bERLinPro** test facility
- **SupraLab@HZB Lab for SC Acc. comp.**
- Proton therapy with Charité
- Research Reactor BER II

bERLinPro - R&D Test Facility

bERLinPro = Berlin Energy Recovery Linac Project

100 mA / low emittance technology demonstrator (covering key aspects of large scale ERL)

project started 2011, fully funded building ready 2018 first electrons 2019 recirculation 2020+

	Basic Parameter
max. beam energy	50 MeV
max. current	100 mA (77 pC/bunch)
normalized emittance	1 μm (0.5 μm)
bunch length (straight)	2 ps or smaller (100 fs)
rep. rate	1.3 GHz
losses	< 10 ⁻⁵

bERLinPro – GunLab – Test Facilities

- bERLinPro, GunLab "first beams"
 - Building & most warm accelerator components ready
 - Infrastructure nearly ready
 - Next step installation of cold SC components, GunLab with CsK₂SB
 - GunLab First tests within HoBiCaT bunker with Cu Cathode

- First "Test Facility" Collaboration with JGU Mainz
 - "Testing XFEL cavities in CW under extreme electron beam conditions"
 → Verbundforschung
 - MESA Linac Module @ bERLinPro

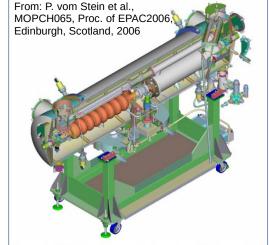
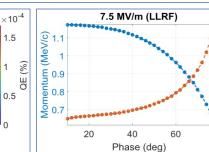


Figure 1: SRF bi-cavity module (courtesy FZ-Rossendorf)

Laser power, spot size cathode position

Cathode
OF scan, ma


QE scan, map dark current RF gradient

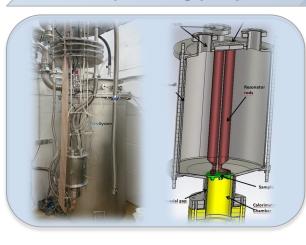
e- Diagnostics

phase scan, δ spread beam size

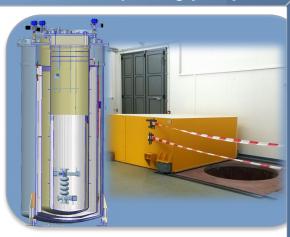
Gun

2018-01-15

X (mm)

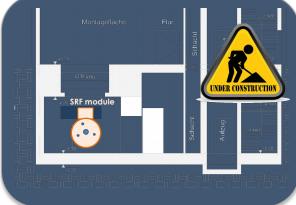

SupraLab@HZB + bERLinPro

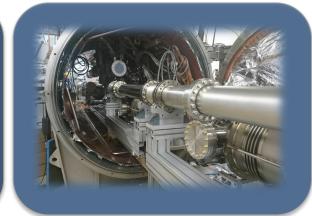
 SupraLab with bERLinPro will offer an infrastructure for the complete SRF development chain from samples to accelerator operation with beam...



1-cell prototype testing (SVTA)

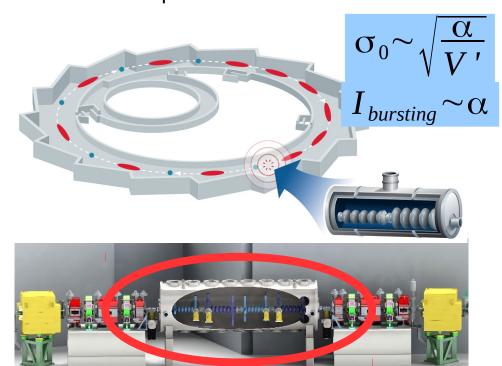
Full cavity testing (LVTA)



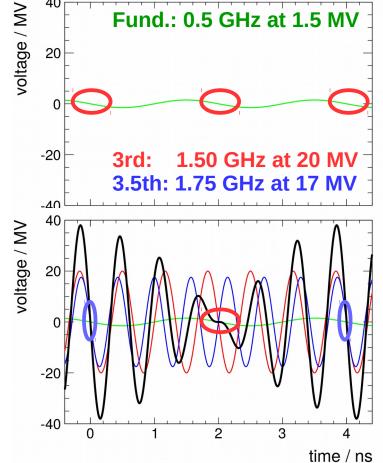

Beam ops (bERLinPro/GunLab)

Full module tests (MTF)

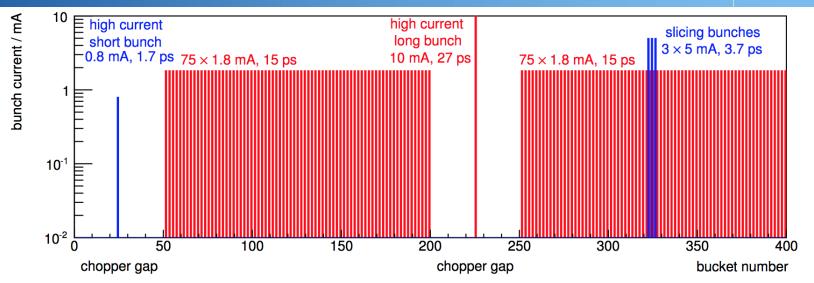
Dressed system (HoBiCaT)



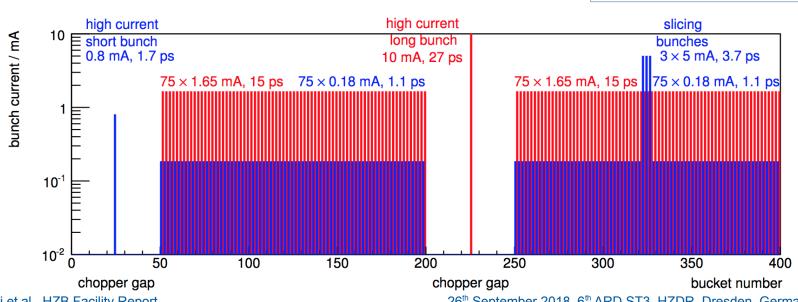
BESSY II moves towards BESSY VSR


BESSY VSR objectives

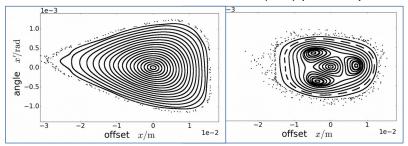
- Add short pulse operation at all beam lines in parallel
- Conserving photon brilliance (emittance) for all users
- Variable pulse length Storage Ring
- **HOM damped CW SRF Cavities**



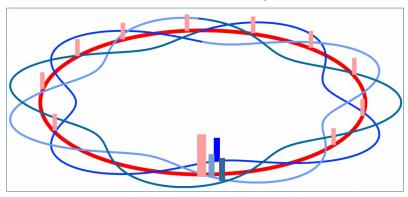
Short and Long Pulses


- Shaping the longitudinal focussing V' and phase by introducing voltage beat
- BESSY VSR cavity setup:

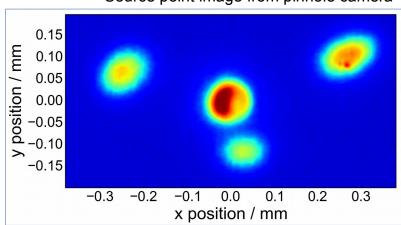
BESSY VSR - envisaged parameters and fill pattern


BESSY II - TRIBs, Bunch Separation Scheme

Two Synchrotron Radiation Sources with

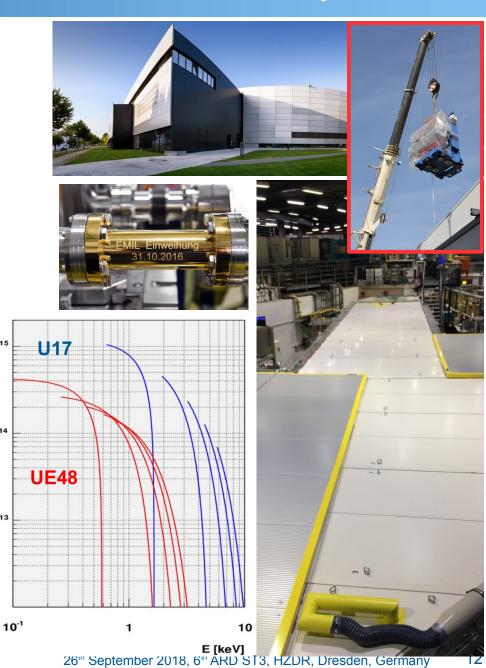

- TRIBs generate 2nd stable island orbit
 - Working point on/close to resonance forms
 Transverse Resonance Island Buckets
- Goal: Two orbits / two sources in one ring
 - Main orbit: average brightness/brilliance
 - Island orbit: timing community, repetition rate
 - First successful "User Test Week at BESSY II in February2018, next in June2019 (beam stability with IDs, separation, TopUp injection)
- **Next steps:** (Chance for Verbundforschung/Collaborations)
 - BESSY II: Realistic user operation mode,
 TopUp injection scheme, orbit bumps, ..., and
 - Many open fundamental questions in this non-linear beam dynamics regime: horizontal – vertical islands, transverse – longitudinal coupling, lattice design for TRIBs with 'non-linear' elements

Verbundforschungsprojekt 2016 - 2019 (Uni Mainz, Uni München):
PhD student: TRIBs as bunch separation scheme


Standard BESSY II and TRIBs (x,x') phase space

TRIBs, two orbit scheme

Source point image from pinhole camera


BESSY II - EMIL, Energy Materials In-Situ Laboratory

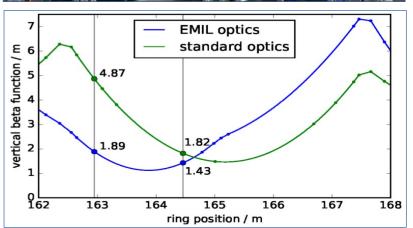
10¹³

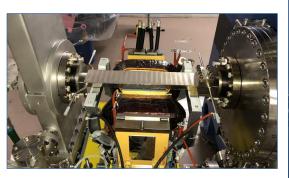
EMIL@BESSY II (HZB & MPG)

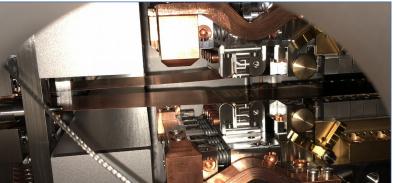
- Combines X-ray analysis methods and deposition tools, partially with industry related technologies
- 5 Endstations: SISSY (2x) - material, devices solar energy CAT - catalysis applications PEEM and PINK - inside storage ring hall
- Synchrotron radiation sources: Cryogenic CPMU-17 (700 eV -- 10 keV) APPLE II UE-48 (80 eV -- 2 keV)
- Inauguration of EMIL Laboratorys on 31.10.2016

BESSY II - EMIL, Lattice & Cryogenic In-Vaccum Undulator

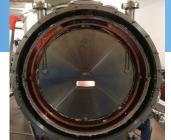
EMIL@BESSY II (HZB & MPG)


- APPLE II UE48 installed in Jan2017 and commissioned in July2017
- Cryogenic In-Vacuum undulator CMPU-17 with small gap of 5mm, installation ongoing


 optics adoption necessary, additional Quad moves vertical beta waist to CPMU-17

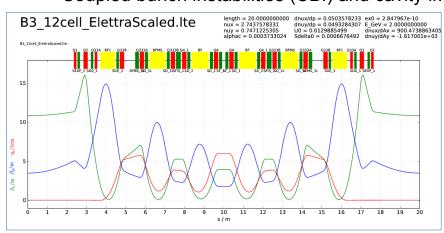


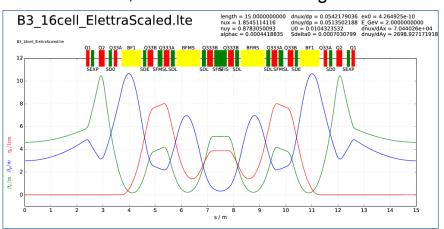
See THPOW039, Bahrdt et al., IPAC2016, Busan, Korea



BESSY II - first 'VSR shutdown'

- Extensive shutdown to maintain BESSY II and prepare for VSR
 - Refurbishment of BAM- and PSF-WLS (Wave Length Shifter)
 Colleagues from Budker Institute
 - Re-Installation of Landau Cavities, after failure in HOM loads
 - Cryogenic In-Vaccum Undulator CPMU-17 for EMIL hard x-Ray branch
 - Removal of Multipole Wiggler in T2 straight for BESSY VSR cryomodule (MPW, 5keV - 100 keV);
 MPW will be shipped to SOLARIS
 - T2 straight equipped with scrappers
 - New diagnostics beam line for BESSY VSR,
 VSR diagnostics, first light
 - Infrastructure for BESSY VSR (Cryoplant, Booster PETRA Cav., etc.)


BESSY II successor - first thoughts towards BESSY III


First thoughts towards BESSY III

- Next-generation low emittance storage ring light sources will operate with long bunches and homogeneous fill to fight bad lifetime
 - (Simultaneous) Timing Experiments become unfeasible at these facilities!
 - Study EUV soft X-ray source pushing transverse and longitudinal bunch properties towards practical (not necessarily ultimate) limits

Study lattice (MBA) solutions optimized for timing experiments

- MBA combined with VSR, TRIBs (+ low alpha, FemtoSlicing, CHG, EEHG, ...)
- Shortest bunches in storage rings; bunch length limitations from CSR, intra-beam-scattering and from single particle beam dynamics
- Coupled bunch instabilities (CBI) and cavity impedance studies, transient beam loading

Summary & Outlook for HZB accelerators/facilities

- Test Facilities: SupraLab & bERLinPro
 - SupraLab: QPR, SVTA, LVTA, HoBiaCat, MTF + bERLinPro
 → Full testing of design and development chain for SC RF devices
 - berLinPro: building, magnets, infrastructure ready, installation of SC components, with Gun & Booster 5 MeV beam possible, MESA Linac collaboration GunLab: first test with CU cathode, next test with CsK2SB in bERLinPro
- MLS: negative-α studies & SSMB project with Tsinghua Uni., SLAC
- BESSY II / VSR / III
 - BESSY II: EMIL with cryogenic small gap in-vaccum undulator CPMU-17
 TRIBs as bunch separation scheme, two syn.rad. sources from one ring
 - BESSY VSR: procurements ongoing, first hardware and first tests at HZB, full cold string design nearly ready, pushing towards preparatory phase (2020+), (see afternoon talk)

Thank you for your attention!

A BIG THANKs to all Colleagues who make all this possible! electrons + warm and SC heartware, photons + beamline scientists hardware, IDs, user groups, operation, IT, communication, administration