

Plan of Talk

- Profile of B-Physics at the LHC
- The CKM-Matrix: Current Knowledge of $V_{
 m CKM}$ & the Phases $lpha,eta,\gamma$
- Benchmark for the LHC: Mixings, Nonleptonics & CP Asymmetries
- Theoretical Interest in Rare B-Decays
 - ullet $b
 ightarrow s \gamma$: SM vs. Experiment
 - $B \to (X_s, K, K^*) \ell^+ \ell^-$: Current Status & Precision Measurements at the LHC
 - $B_s
 ightarrow \mu^+ \mu^-$ in the SM and SUSY: Prospects at the LHC
- Summary

B-factories vs. b-factory

Production σ_{bb}	PEPII, KEKB 1 nb	LHC (LHCb–ATLAS/CMS)	
Production σ_{bb}	1 nb	C 00 1	1
	1 110	~500 µb	
Typical bb rate	10 Hz	100–1000 kHz	
bb purity	~1/4	$\sigma_{bb}/\sigma_{inel} = 0.6\%$ Trigger is a major issue !	(\mathbf{x})
Pileup	0	0.5–5	
b-hadron types	${f B^+ B^- (50\%) \over B^0 B^0 (50\%)}$	B^+ (40%), B^0 (40%), B_s (10%) B_c (< 0.1%), b-baryons (10%)	
b-hadron boost	Small	Large (decay vertexes well separated)	
Production vertex	Not reconstructed	Reconstructed (many tracks)	
Neutral B mixing	Coherent B ⁰ B ⁰ pair mixing	Incoherent B ⁰ and B _s mixing (extra flavour-tagging dilution)	
Event structure	$B\overline{B}$ pair alone	Many particles not associated with the two b hadrons	

Completing the program on B Physics...

> Precise measurement of $B_s^0-\overline{B}_s^0$ mixing: Δm_s , $\Delta \Gamma_s$ and phase ϕ_{s} .

- $\begin{array}{l} \mathsf{B}_{s} \rightarrow \mathsf{D}_{s} \pi, \ \dots \\ \mathsf{B}_{s} \rightarrow \mathsf{J}/\psi \phi, \ \mathsf{B}_{s} \rightarrow \mathsf{J}/\psi \eta^{(\prime)} \end{array}$
- Search for effects of NP appearing in suppressed and rare exclusive and inclusive B decays
- Precise γ determinations including processes only at tree-level, in order to disentangle possible NP contributions
- Other measurements of CP phases in different channels to over-constrain the Unitarity Triangles

Vancouver, 9-12 April 2006

 $\begin{array}{l} \mathsf{B}_{(s)}{}^{0} \rightarrow \mathsf{X}\gamma, \ \mathsf{B}^{0} \rightarrow \mathsf{K}^{\star 0}\mathsf{I}^{+}\mathsf{I}^{-}, \\ \mathsf{b} \rightarrow \mathsf{s}\mathsf{I}^{+}\mathsf{I}^{-}, \ \mathsf{B}_{s} \rightarrow \mu^{+}\mu^{-}... \end{array}$

 $\begin{array}{l} \mathsf{B}_{s} \rightarrow \mathsf{D}_{s}\mathsf{K}, \\ \mathsf{B}^{0} \rightarrow \mathsf{D}^{0}\mathsf{K}^{*0}, \ \mathsf{B}^{\pm} \rightarrow \mathsf{D}\mathsf{K}^{\pm}, \\ \mathsf{B}^{0} \rightarrow \pi\pi \ \& \ \mathsf{B}_{s} \rightarrow \mathsf{K}\mathsf{K}, \ \dots \end{array}$

 $B^{0} \rightarrow \phi K_{s}, B_{s} \rightarrow \phi \phi, \dots$ $B^{0} \rightarrow \rho \pi, B^{0} \rightarrow \rho \rho, \dots$

Andreas Schopper

Flavor Physics and CP Violation

Expected Physics Performance

B-mixing:

Vancouver, 9-12 April 2006

 \blacktriangleright "control channel" B⁰ \rightarrow J/ ψ K_s $\succ \Delta m_s$ with $B_s^0 \rightarrow D_s \pi$ $\blacktriangleright \phi_s$ and $\Delta \Gamma_s$ with $B^0_s \rightarrow J/\psi \phi(\eta)$ Suppressed and rare decays: \blacktriangleright Exclusive b \rightarrow s $\mu^+\mu^ \succ$ B_s⁰ \rightarrow $\mu^+\mu^-$ <u>Measurement of γ :</u> \succ from $B_s \rightarrow D_s K$ \succ from B⁰ \rightarrow D⁰K^{*0} \succ from $B^{\pm} \rightarrow DK^{\pm}$ \succ from B⁰ $\rightarrow \pi^+\pi^-$ and B_s $\rightarrow K^+K^-$

Andreas Schopper

Flavor Physics and CP Violation

15

The Cabibbo-Kobayashi-Maskawa Matrix -

$$V_{
m CKM} \equiv egin{pmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

• Customary to use the handy Wolfenstein parametrization

$$V_{
m CKM} ~\simeq ~ egin{pmatrix} 1-rac{1}{2}\lambda^2 & \lambda & A\lambda^3 \left(
ho-i\eta
ight) \ -\lambda(1+iA^2\lambda^4\eta) & 1-rac{1}{2}\lambda^2 & A\lambda^2 \ A\lambda^3 \left(1-
ho-i\eta
ight) & -A\lambda^2 \left(1+i\lambda^2\eta
ight) & 1 \end{pmatrix}$$

• Four parameters: $A,\ \lambda,\
ho,\ \eta$

• Perturbatively improved version of this parametrization

$$ar{
ho}=
ho(1-\lambda^2/2),\ \ ar{\eta}=\eta(1-\lambda^2/2)$$

• The CKM-Unitarity triangle $[\phi_1=eta; \ \phi_2=lpha; \ \phi_3=\gamma]$

Status of the Third Row of $V_{\rm CKM}$ $|V_{tb}|$ • From direct production and decays of the top quark (hep-ex/0505091) $R\equiv rac{\mathcal{B}(t ightarrow W+b)}{\mathcal{B}(t ightarrow W+\sum_x q)}=rac{|V_{tb}|^2}{|V_{td}|^2+|V_{ts}|^2+|V_{tb}|^2}$ $R = 1.12^{+0.21}_{-0.19} (\text{stat})^{+0.17}_{-0.13} (\text{syst.})$ • Assuming CKM unitarity & CDF Data $\implies |V_{tb}| > 0.78$ (95% C.L.) $|V_{td}|$ • From B_d^0 - $\overline{B_d^0}$ Mixing; $\Delta M_d = (0.508 \pm 0.004)$ ps⁻¹ [HFAG 2006] • SM (Box contribution with NLO QCD corrections) $(x_t=m_t^2/m_W^2)$ $\Delta M_d = rac{G_F^2}{6\pi^2} \hat{\eta}_B |V_{td}V_{tb}^*|^2 M_{B_d}(f_{B_d}^2 \hat{B}_{B_d}) M_W^2 S_0(x_t)$ $S_0(x) = x \cdot \left[rac{1}{4} + rac{9}{4} rac{1}{(1-x)} - rac{3}{2} rac{1}{(1-x)^2} - rac{3}{2} rac{x^2 \ln x}{(1-x)^3} ight]$ $\langle ar{B}^0_q | (ar{b} \gamma_\mu (1-\gamma_5) q)^2 | B^0_q angle \equiv rac{8}{3} f_{B_q}^2 B_{B_q} M_{B_q}^2$

 $|V_{td}|$ and $|V_{ts}|$ with Lattice-QCD • Unquenched Lattice-QCD [Gray et al. (HPQCD); Aoki et al. (JLQCD)]: $\sqrt{\hat{B}_{B_d}f_{B_d}}=244\pm26$ MeV; $\bar{m}_t(m_t) = 162.3(2.2) \text{ GeV}; \quad S_0(x_t) = 2.29(5)$ $|V_{td}^{*}V_{tb}| = 7.4 imes 10^{-3} [rac{244 \; {
m MeV}}{\sqrt{\hat{B}_{B_{s}}f_{B_{s}}}}] \sqrt{rac{2.29}{S_{0}(x_{t})}}$ • Lattice-QCD & SM $\implies |V_{td}^*V_{tb}| = (7.4 \pm 0.8) \times 10^{-3}$ [PDG 2006] • B_s^0 - $\overline{B_s^0}$ Mixing: $\Delta M_s = (17.77 \pm 0.10 \text{ (stat)} \pm 0.07 \text{ (syst)}) \text{ ps}^{-1}$ [CDF 2006] • SM: $\Delta M_s = rac{G_F^2}{6\pi^2} \hat{\eta}_B |V_{ts}^* V_{tb}|^2 M_{B_s}(f_{B_s}^2 \hat{B}_{B_s}) M_W^2 S_0(x_t)$ • Lattice-QCD: $\sqrt{\hat{B}_{B_s}f_{B_s}}=281\pm21$ MeV [HPQCD 2006] & $|V_{ts}^*V_{tb}| = 4.1(1) \times 10^{-2} \Longrightarrow \Delta M_s = (20.3 \pm 3.0 \pm 0.8)(\text{ps})^{-1}$ • Using the ratio $\Delta M_s/\Delta M_d$ and $\xi = 1.21^{+0.047}_{-0.035}$ [Lattice-QCD (Okamoto et al.)] $rac{\Delta M_s}{\Delta M_d} = \xi rac{M_{B_s}}{M_{B_d}} rac{|V_{ts}|^2}{|V_{td}|^2}; \hspace{1em} \xi = \sqrt{rac{f_{B_s}^2 \dot{B}_{B_s}}{f_{B_d}^2 \hat{B}_{B_d}}}$ $\implies |V_{td}/V_{ts}| = 0.2060 \pm 0.0007(\text{exp}) \stackrel{+0.008}{_{-0.006}}(\text{th})$

 $-\Delta M_s$ (expt) vs. SM Estimates

 $\Delta M_s = (20.9 \pm 2.6) \; (\mathrm{ps})^{-1} \; [\mathsf{UTfit} \; 2006]$

 $\Delta M_s = (21.7^{+5.9}_{-4.2}) \; (\mathrm{ps})^{-1} \; [\mathsf{CKMfitter} \; 2006]$

• Lattice QCD Calculation [HPQCD; hep-lat/0610104]

$$f_{B_s} \sqrt{\hat{B}_{B_s}} = 0.281(21) \text{ GeV \& } |V_{ts}^* V_{tb}| = 4.1(1) \times 10^{-2} \ \Longrightarrow \ \Delta M_s = (20.3 \pm 3.0 \pm 0.8) \ (ext{ps})^{-1}$$

- <u>CDF Measurement:</u> $\Delta M_s = (17.77 \pm 0.10 \pm 0.07) \ (\mathrm{ps})^{-1} \ [\text{CDF 2006}]$
- $\frac{\Delta M_s^{\text{expt}}}{\Delta M_s^{\text{SM}}} = 0.85 \pm 0.10 \text{ [UTfit]}; 0.82 \pm 0.20 \text{ [CKMfitter]}; 0.88 \pm 0.13 \text{ [HPQCD]}$
- SM estimates for ΔM_s larger compared to CDF by circa 1σ
- Error dominated by theory

Interplay of Mixing & Decays of
$$B^0$$
 and $\overline{B^0}$ to CP Eigenstate
• Involving tree-dominated B-decays $(b \to c\bar{c}s)$, such as
 $B^0/\overline{B^0} \to J/\psi K_s$; $J/\psi K_L$
 $\mathcal{A}_f(t) = \frac{\Gamma(\overline{B^0}(t) \to f) - \Gamma(B^0(t) \to f)}{\Gamma(\overline{B^0}(t) \to f) + \Gamma(B^0(t) \to f)}$
 $= C_f \cos(\Delta M_B t) + S_f \sin(\Delta M_B t)$
 $C_f = \frac{(|\lambda_f|^2) - 1}{(|\lambda_f|^2 + 1)}$; $S_f = \frac{2 \operatorname{Im} \lambda_f}{(|\lambda_f|^2 + 1)}$
• Definitions:
 $\lambda_f \equiv (q/p) \ \rho(f); \ \rho(f) = \frac{\bar{A}(f)}{A(f)}$
 $A(f) = \langle f|H|B^0 \rangle; \ \bar{A}(f) = \langle f|H|\overline{B^0} \rangle$
 $q/p = \frac{V_{tb}^* V_{td}}{V_{tb} V_{td}^*} = e^{-2i\phi_{\text{mixing}}} = e^{-2i\beta}$
• If only a Single Amplitude dominant, then one can write:
 $\rho(f) = \eta_f e^{-2i\phi_{\text{decayy}}}$
where $\eta_f = \pm 1$ is the intrinsic CP-Parity of the state $f \Rightarrow |\rho(f)| = 1$
 $\mathcal{A}_f(t) = S_f \sin(\Delta M_B t); \ S_f = -\eta_f \sin 2(\phi_{\text{mixing}} + \phi_{\text{decay}}); \ C_f = 0$

- B-Physics Benchmarks for the LHC

Mixings, Nonleptonics & CP Violation

- Measurements of ϕ_s and $\Delta\Gamma_s$ in the B^0_s $\overline{B^0_s}$ system
- Measurements of BRs in $B_s^0 \to h_1 h_2$ decays, with $h_1, h_2 = \pi, K, \eta, \eta', \rho, K^*, \phi, ...$, enabling the measurements of a number of ratios of BRs involving $B_s^0 \to h_1 h_2$ and $B_d^0 \to h_1 h_2$; yielding precision tests of SM
- Time-dependent and integrated CP asymmetries in partial decay modes yielding more precise determinations of $lpha, eta, \gamma$
- Searches of BSM physics in the Penguin-dominated decays of the ${\cal B}^0_s$ meson

ϕ_s and $\Delta \Gamma_s$ from B_s \rightarrow J/ψ ϕ (η,η'...)

- > SU(3) analogue of B \rightarrow J/ ψ K_s, measuring the B_s- \overline{B}_s mixing phase
- → in SM $\phi_s = -\arg(V_{ts}^2) = -2\lambda\eta^2 \sim -0.04$ → increased sensitivity to New Physics
- Iarge CP asymmetry would signal Physics Beyond SM
- > also needed for extracting γ from $B_s \rightarrow D_s K$ or from $B \rightarrow \pi \pi$ and $B_s \rightarrow K K$
- $J/\psi\phi$ is not a pure CP eigenstate:
- ✓ 2 CP even, 1 CP odd amplitudes contributing
- ✓ need to fit angular distributions of decay final states as function of proper time (needs external Δm_s)
- \checkmark requires very good proper time resolution

Expected sensitivity: (at $\Delta m_s = 20 \text{ ps}^{-1}$)

✓ <u>LHCb</u>: 125k Bs→J/ $\psi\phi$ signal events/year

- $\rightarrow \sigma_{\text{stat}}(\sin \phi_{\text{s}}) \sim 0.031, \sigma_{\text{stat}}(\Delta \Gamma_{\text{s}}/\Gamma_{\text{s}}) \sim 0.011 / (1 \text{ year}, 2 \text{ fb}^{-1})$
- $\rightarrow \sigma_{\text{stat}}(\sin \phi_{s}) \sim 0.013$ after first 5 years, adding pure
- CP modes like $J/\psi\eta$, $J/\psi\eta$ ' (small improvement) \checkmark <u>ATLAS</u>: similar event rate as LHCb but less sensitive
 - $\rightarrow \sigma_{\text{stat}}(\sin \phi_{\text{s}}) \sim 0.08 \text{ (1year, 10 fb}^{-1})$

Vancouver, 9-12 April 2006

 \checkmark <u>CMS</u>: > 50k events/year, sensitivity study ongoing

Flavor Physics and CP Violation

sin(2 β) from B⁰ \rightarrow J/ ψ K_S

 \succ "gold-plated" decay channel at B-factories for measuring the B_d- B_d mixing phase

- \succ needed for extracting γ from $B \to \pi\pi$ and $B_s \to K K$, or from $B \to D^*\pi$
- \succ in SM $A_{CP}^{dir} \sim 0$, non-vanishing value $\mathcal{O}(0.01)$ could be a signal of Physics Beyond SM

$$A_{CP}^{th}(t) = A_{CP}^{dir} \cdot \cos(\Delta m_d \cdot t) + A_{CP}^{mix} \cdot \sin(\Delta m_d \cdot t)$$

- Projected Precision on γ at LHC

- γ from $B_s o D_s K \implies \sigma(\gamma) \sim 14^\circ$ in 1 year at 2 fb $^{-1}$
- 2 time-dependent asymmetries from 4 decays: $B_s(\bar{B}_s) \rightarrow D_s^- K^+, D_s^+ K^-$
- 2 tree decays ($b \rightarrow c$ and $b \rightarrow u$) of same magnitude ($\sim \lambda^3$) interfere via B_s mixing
- γ from $B^0 o D^0 K^{*0} \implies \sigma(\gamma) \sim 8^\circ$ in 1 year at 2 fb $^{-1}$
- Dunietz variant of Gronau-Wyler method [Phys. Lett. B270, 75 (1991)]
- Two color-suppressed diagrams interfering via D^0 -meson mixing
- 6 decay rates, self-tagged and time-integrated
- γ from $B^\pm o D^0 K^\pm \quad \Longrightarrow \quad \sigma(\gamma) \sim 5^\circ$ in 1 year at 2 fb $^{-1}$
- based on Atwood-Dunietz-Soni method [Phys. Rev. Lett. 78, 3257 (1997)]
- measure relative rates of $B^- \to D^0(K\pi)K^-$ and $B^+ \to D^0(K\pi)K^+$
- γ from $B^0 o \pi^+\pi^-$ and $B_s o K^+K^- \implies \sigma(\gamma) \sim 5^\circ$ in 1 year at 2 fb $^{-1}$
- large penguin contributions in both decays \longrightarrow sensitive to New Physics
- measure time-dependent CP asymmetry for $B^0 \to \pi^+\pi^-$ and $B_s \to K^+K^-$
- C and S depend on $\gamma,$ mixing phases, and penguin-to-tree amplitude ratio $d\,{\rm e}^{i\theta}$
- exploit "U-spin" symmetry ($d \leftrightarrow s$) [R. Fleischer, Phys. Lett. B459, 306 (1999)]

Inclusive Rare B decays

Two inclusive rare *B*-decays of experimental interest

 $ar{B} o X_s \gamma$ and $ar{B} o X_s l^+ l^-$

 $X_s =$ any hadronic state with S = -1, containing no charmed particles

Theoretical Interest:

- Both measured; accurate measurements anticipated at B- and SuperB-factories
- Non-perturbative effects under control
- Sensitivity to new physics

Status of the NNLO perturbative calculations:

- $\bar{B} \rightarrow X_s l^+ l^-$: completed several years ago [Bobeth et al.; Gambino et al.; Asatrian et al.; Ghinculov et al.; Huber et al.]
- $ar{B} o X_s \gamma$: Just completed
 - The first estimate of ${\cal B}(ar B o X_s \gamma)$, Misiak et al. (17 authors), hep-ph/0609232
 - Analysis of $\mathcal{B}(\bar{B} \to X_s \gamma)$ at NNLO with a cut on Photon energy, T. Becher and M. Neubert, hep-ph/0610067

- Experimental data -

Experimental Data on $B \to V \gamma$ Decays

Branching ratios (in units of 10^{-6}) [August 2006]

Mode	BABAR	BELLE	CLEO	Average [HFAG]
$B \to X_s \gamma$	$327 \pm 18^{+55}_{-41}$	$355 \pm 32^{+30+11}_{-31-7}$	$321 \pm 43^{+32}_{-29}$	$355 \pm 24^{+9}_{-10} \pm 3^{\ddagger}$
$B^+ \to K^*(892)^+ \gamma$	$38.7 \pm 2.8 \pm 2.6$	$42.5 \pm 3.1 \pm 2.4$	$37.6^{+8.9}_{-8.3} \pm 2.8$	40.3 ± 2.6
$B^0 \to K^*(892)^0 \gamma$	$39.2 \pm 2.0 \pm 2.4$	$40.1 \pm 2.1 \pm 1.7$	$45.5^{+7.2}_{-6.8} \pm 3.4$	40.1 ± 2.0
$B^+ \to K_1(1270)^+ \gamma$		$43\pm9\pm9$		43 ± 12
$B^+ \to K_2^*(1430)^+ \gamma$	$14.5\pm4.0\pm1.5$			14.5 ± 4.3
$B^0 \to K_2^* (1430)^0 \gamma$	$12.2 \pm 2.5 \pm 1.0$	$13.0\pm5.0\pm1.0$		12.4 ± 2.4
$B^+ \to \rho^+ \gamma$	$1.06^{+0.35}_{-0.31} \pm 0.09$	$0.55_{-0.36}^{+0.42}_{-0.08}^{+0.09}$	< 13.0	$0.87^{+0.27}_{-0.25}$
$B^0 o ho^0 \gamma$	$0.77^{+0.21}_{-0.19}\pm0.07$	$1.25\substack{+0.37+0.07\\-0.33-0.06}$	< 17.0	$0.91\substack{+0.19 \\ -0.18}$
$B^0 o \omega \gamma$	$0.39^{+0.24}_{-0.20}\pm0.03$	$0.56\substack{+0.34+0.05\\-0.27-0.10}$	< 9.2	$0.45\substack{+0.20 \\ -0.17}$
$B ightarrow (ho, \omega) \gamma$	$1.01 \pm 0.21 \pm 0.08$	$1.32\substack{+0.34}_{-0.31}\substack{+0.10\\-0.09}$	< 14.0	
$B^0 \to \phi \gamma$	< 0.85		< 3.3	< 0.85
$B^0 \to J/\psi \gamma$	< 1.6			< 1.6
[‡] Calculated for the	e photon energy rang	ge $E_\gamma > 1.6~{ m GeV}$		

 $ullet ar B o X_s l^+ l^-$ -

• The NNLO calculation of $\bar{B} \to X_s l^+ l^-$ corresponds to the NLO calculation of $\bar{B} \to X_s \gamma$, as far as the number of loops in the diagrams is concerned.

• Wilson Coefficients of the two additional operators

$$O_i=rac{e^2}{16\pi^2}(ar{s}_L\gamma_\mu b_L)(ar{l}\gamma^\mu\gamma_5 l), \qquad \quad i=9,10$$

have the following perturbative expansion:

$$egin{array}{rll} C_9(\mu) &=& rac{4\pi}{lpha_s(\mu)} C_9^{(-1)}(\mu) \ + \ C_9^{(0)}(\mu) \ + \ rac{lpha_s(\mu)}{4\pi} C_9^{(1)}(\mu) \ + \ .. \ C_{10} &=& C_{10}^{(0)} \ + \ rac{lpha_s(M_W)}{4\pi} C_{10}^{(1)} \ + \ ... \end{array}$$

• After an expansion in α_s , the term $C_9^{(-1)}(\mu)$ reproduces (the dominant part of) the electro-weak logarithm that originates from photonic penguins with charm quark loops:

– Electroweak Penguins $b ightarrow s \ell^+ \ell^-$

• $B
ightarrow X_s \ell^+ \ell^-$ decay rate

 $\mathcal{B}(B \to X_s \ell^+ \ell^-) = (4.46^{+0.98}_{-0.96}) \times 10^{-6} \ [\mathrm{HFAG'06}]$

 $SM: (4.2 \pm 0.7) \times 10^{-6} \ [\text{AGHL'01}]; \ (4.6 \pm 0.8) \times 10^{-6} \ [\text{GHIY'04}]$

• Differential distributions in $B o X_s \ell^+ \ell^-$

• $M(X_s)$ -distribution: tests $s \to X_s$ fragmentation model; current FMs provide reasonable fit to data

• $q^2 = M_{\ell^+\ell^-}^2$ -distribution away from the $J/\psi, \psi', ...$ resonances is sensitive to short-distance physics; current data in agreement with the SM estimates but the precision is not better than 25%

• Forward-Backward Asymmetry (FBA) is likewise sensitive to the SM and BSM effects, in particular encoded in the Wilson coefficients C_7 , C_9 and C_{10}

$$A_{
m FB}(\hat{s} \sim C_{10}(2C_7 + C_9(\hat{s})\hat{s}); \ \ \hat{s} = q^2/M_B^2$$

• $A_{\rm FB}(\hat{s})$ not yet measured; possible only in experiments at B factories

Exclusive Decays $B \to (K, K^*) \ell^+ \ell^-$ • $B \to K$ (pseudoscalar P); $B \to K^*$ (Vector V) Transitions involve the currents: $\Gamma^{1}_{\mu} = ar{s} \gamma_{\mu} (1-\gamma_{5}) b, \;\; \Gamma^{2}_{\mu} = ar{s} \sigma_{\mu
u} q^{
u} (1+\gamma_{5}) b$ $\langle P|\Gamma^1_{\mu}|B
angle\supset f_+(q^2), f_-(q^2)$ $\langle P|\Gamma^2_{_{_{I\!I}}}|B
angle\supset f_T(q^2)$ $\langle V|\Gamma^1_\mu|B
angle\supset V(q^2), A_1(q^2), A_2(q^2), A_3(q^2)$ $\langle V|\Gamma^2_\mu|B
angle\supset T_1(q^2),T_2(q^2),T_3(q^2)$

- 10 non-perturbative q^2 -dependent functions (Form factors) \implies model-dependence
- Data on $B o K^* \gamma$ provides normalization of $T_1(0) = T_2(0) \simeq 0.28$
- HQET/SCET-Approach allows to reduce the number of independent form factors from 10 to 3; perturbative symmetry-breaking corrections [Beneke, Feldmann, Seidel; Beneke, feldmann]
- HQET & SU(3) relate $B \to (\pi, \rho) \ell \nu_\ell$ and $B \to (K, K^*) \ell^+ \ell^-$ to determine the remaining FF's

– Experimental data vs. SM in $B o (X_s, K, K^*) \ell^+ \ell^-$ Decays

Branching ratios (in units of 10⁻⁶) [HFAG: August 2006] SM: [A.A., Lunghi, Greub, Hiller, hep-ph/0112300]

Decay Mode	Expt. (BELLE & BABAR)	Theory (SM)
$B \to K \ell^+ \ell^-$	0.45 ± 0.05	0.55 ± 0.08
$B \to K^* e^+ e^-$	$1.26^{+0.28}_{-0.27}$	1.25 ± 0.39
$B \to K^* \mu^+ \mu^-$	1.45 ± 0.23	1.19 ± 0.31
$B \to X_s \mu^+ \mu^-$	$4.26^{+1.18}_{-1.16}$	7.0 ± 2.1
$B \to X_s e^+ e^-$	$4.70^{+1.24}_{-1.23}$	5.8 ± 1.8
$B \to X_s \ell^+ \ell^-$	$4.46_{-0.96}^{+0.98}$	6.2 ± 1.5

- Inclusive measurements and the SM rates include a cut $M_{\ell^+\ell^-}>0.2~{\rm GeV}$

• SM & Data agree within O(20-30)%

B physics with 100 pb⁻¹: sensitivity to rare exclusive B decays

	Decay	Statistics or limit with 100 pb ⁻¹	Measurement today	
	В⁺→µµ К⁺	23	Belle today 80?	
	В⁰→ µµ К⁰*	12		
	$B_{s} \rightarrow \mu \mu \phi$	9		
_	$\Lambda_{b} \rightarrow \mu \mu \Lambda$	3		
	Β _s →μμ	6.4× 10 ⁻⁸ at 90% C.L.	CDF currently 8.0x10 ⁻⁸ at 90% C.L.	E *
21		Paula Eerola, Li Beauty 2006, Oxford, 2	und University 5-29 September 2006	

$$\begin{split} \textbf{B}_{s} & \rightarrow \mu^{+}\mu^{-} \text{ in SM} \\ \bullet \text{ Effective Hamiltonian} \\ \mathcal{H}_{eff} = -\frac{G_{F}\alpha}{\sqrt{2\pi}} V_{ts}^{*} V_{tb} \sum_{i} \left[C_{i}(\mu) \mathcal{O}_{i}(\mu) + C_{i}'(\mu) \mathcal{O}_{i}'(\mu) \right] \\ \mathcal{O}_{10} &= \left(\bar{s}_{\alpha} \gamma^{\mu} P_{L} b_{\alpha} \right) \left(\bar{l} \gamma_{\mu} \gamma_{5} l \right), \qquad \mathcal{O}_{10}' = \left(\bar{s}_{\alpha} \gamma^{\mu} P_{R} b_{\alpha} \right) \left(\bar{l} \gamma_{\mu} \gamma_{5} l \right) \\ \mathcal{O}_{S} &= m_{b} \left(\bar{s}_{\alpha} P_{R} b_{\alpha} \right) \left(\bar{l} l \right), \qquad \mathcal{O}_{S}' = m_{s} \left(\bar{s}_{\alpha} P_{L} b_{\alpha} \right) \left(\bar{l} \gamma_{5} l \right) \\ \mathcal{O}_{P} &= m_{b} \left(\bar{s}_{\alpha} P_{R} b_{\alpha} \right) \left(\bar{l} \gamma_{5} l \right), \qquad \mathcal{O}_{P}' = m_{s} \left(\bar{s}_{\alpha} P_{L} b_{\alpha} \right) \left(\bar{l} \gamma_{5} l \right) \\ \text{BR} \left(\bar{B}_{s} \rightarrow \mu^{+} \mu^{-} \right) &= \frac{G_{F}^{2} \alpha^{2} m_{B_{s}}^{2} f_{B_{s}}^{2} \tau_{B_{s}}}{64 \pi^{3}} |V_{ts}^{*} V_{tb}|^{2} \sqrt{1 - 4 \hat{m}_{\mu}^{2}} \\ \times \left[\left(1 - 4 \hat{m}_{\mu}^{2} \right) |F_{S}|^{2} + |F_{P} + 2 \hat{m}_{\mu}^{2} F_{10}|^{2} \right] \\ \text{where } \hat{m}_{\mu} &= m_{\mu} / m_{B_{s}} \text{ and} \\ F_{S,P} &= m_{B_{s}} \left[\frac{C_{S,P} m_{b} - C_{S,P}' m_{s}}{m_{b} + m_{s}} \right], \qquad F_{10} &= C_{10} - C_{10}' \\ \text{BR} \left(\bar{B}_{s} \rightarrow \mu^{+} \mu^{-} \right)_{\text{SM}} &= \left(3.46 \pm 1.5 \right) \times 10^{-9} \left[\text{Buchalla, Buras} \right] \\ f_{B_{s}} &= \left(230 \pm 30 \right) \text{MeV} \end{split}$$

 $ightarrow B_s
ightarrow \mu^+ \mu^-$ in Minimal Flavor Violation SUSY Models —

• Higgsino contribution to ${\cal B}(B_s o \mu^+ \mu^-)$ [Babu, Kolda;...]

$${\cal B}(B_s o \mu\mu) \simeq {G_F^2 \over 8\pi} \, \eta^2_{
m QCD} m^3_{B_s} f^2_{B_s} au_{B_s} m^2_b \, m^2_\mu \left({{{
m tan}^2\,eta}\over{\cos^4eta}}
ight) \left({\kappa^2_{\widetilde H}\over m^4_A}
ight).$$

• $\eta_{
m QCD}\simeq 1.5$ is the QCD correction due to the RG between the SUSY and B_s scales

$$\kappa_{\widetilde{H}}=-rac{G_F\,m_t^2\,V_{ts}V_{tb}}{4\sqrt{2}\pi^2\sin^2eta}\,\mu A_t\,f(\mu^2,m_{\widetilde{t}_L}^2,m_{\widetilde{t}_R}^2)$$

$B_{s}^{0} \rightarrow \mu^{+}\mu^{-}$ with 100 pb⁻¹, 10 fb⁻¹ and 30 fb⁻¹

Discovery channel $B^0_{s} \rightarrow \mu^+\mu^-$

Integrated LHC luminosity	N(signal) after all cuts	N(back after all	(gr.) l cuts	ATLAS upper limit for Br(B ⁰ _s → μ ⁺ μ ⁻) at 90% C.L.	CDF upper limit for Br($B^0_s \rightarrow \mu^+\mu^-$) at 90% C.L.
100 pb ⁻¹	~ 0	~ 0.2		6 ×10 ⁻⁸	0.010.8
10 fb ⁻¹	~ 7	~ 20		1.2×10 ⁻⁸	8'0×10.₀
30 fb ⁻¹	~ 21	~ 60		7 ×10 ⁻⁹	
22		Pa Beauty 20	aula Eerola, Li 06, Oxford, 2	und University 5-29 September 2006	

ay, sensit.				
$)^{-9}$ in SM	can be strong	yly enhanced ir	SUSY	
from Tev	atron:	,, ee.e.e		
2.3×10-7 at	: 95% CL			
1.0×10 ⁻⁷ at	: 95% CL			
ct for sign	nificant measu	irement		
80k bb→µ 10k b→µ, level, effic	µ events with g b→µ events wi iency assuming	enerator cuts, ef th generator cuts cut factorization	ficiency assumings, trigger simulation	ng cut factorization ted at generator
1 year	$B_s \rightarrow \mu^+ \mu^-$ signal (SM)	b→µ, b→µ background	Inclusive bb background	Other backgrounds
2 fb ⁻¹	30	< 100	< 7500	
10 fb ⁻¹	7	< 20		
10 fb-1	7	< 1		
	from Teva 2.3×10^{-7} at 1.0×10^{-7} at <u>set for sign</u> get reliable Full simula $80k \ bb \rightarrow \mu$ $10k \ b \rightarrow \mu$, level, effic 1 year 2 fb ⁻¹ 10 fb ⁻¹	from Tevatron: 2.3×10 ⁻⁷ at 95% CL 1.0×10 ⁻⁷ at 95% CL ect for significant measures (et reliable estimate of e Full simulation: 10M incl. 80k bb $\rightarrow\mu\mu$ events with g 10k b $\rightarrow\mu$, b $\rightarrow\mu$, b $\rightarrow\mu$ events with g 10k b $\rightarrow\mu$, b $\rightarrow\mu$, b $\rightarrow\mu$ events with g 10k b $\rightarrow\mu$, b $\rightarrow\mu$	from Tevatron: 2.3×10 ⁻⁷ at 95% CL 1.0×10 ⁻⁷ at 95% CL 2.3×10 ⁻⁷ significant measurement 2.3×10 ⁻⁷ signal (SM) incl. bb events + 101 2.6×10 ⁻¹ 30 2.6×10 ⁻¹ 400 10.6×10 ⁻¹ 7 2.20	from Tevatron: 2.3×10 ⁻⁷ at 95% CL 1.0×10 ⁻⁷ at 95% CL ect for significant measurement get reliable estimate of expected background: Full simulation: 10M incl. bb events + 10M b→µ, b→µ events 80k bb→µµ events with generator cuts, efficiency assumint 10k b→µ, b→µ events with generator cuts, trigger simulation 10k b→µ, b→µ events with generator cuts, trigger simulation 1 year $B_s \rightarrow \mu^+\mu^ b \rightarrow \mu, b \rightarrow \mu$ Inclusive bb background 2 fb ⁻¹ 30 < 100 < 7500 10 fb ⁻¹ 7 < 20

Summary

- All current measurements involving CC and FCNC processes (decay rates and distributions, Mixings, CP Violation) of the B^{\pm} and B^0_d mesons are in agreement with the SM
- Tevatron has provided first measurements for the B_s^0 ; Experiments at the LHC will extend this frontier enormously: $\Delta M_s, \ \phi_s, \ \gamma, \ \mathcal{B}(B_s \to \mu^+ \mu^-)$; QCD and Electroweak penguins
- A lot of theoretical interest remains in precision studies of Rare *B*-decays: $\mathcal{B}(B \to X_s \gamma)$; $\mathcal{B}(B \to (X_s, K^*)\ell^+\ell^-)$, in particular the Forward-Backward Asymmetries of the leptons
- CP Asymmetries & Rare *B*-Decays have the potential to discover Physics Beyond-the-SM in the flavour sector; In all likelihood this would require the statistical power of a Super-B factory and LHC
- Hope that the synergy of high energy frontier and low energy precision physics, which worked so well in piecing together the SM yielding precise knowledge of the CKM matrix, will continue to hold sway in the LHC-era, providing valuable information on the flavour aspects of the next Paradigm!