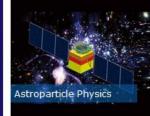


Low Level RF Applications based on MicroTCA.4 at IHEP

Xinpeng Ma

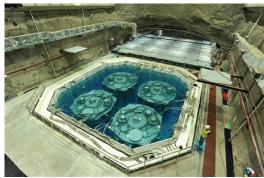
Institute of High Energy Physics, Chinese Academy of Sciences On behalf of LLRF team 2018-12-06

7th MicroTCA Workshop for industry and research, 2018-12-05, DESY

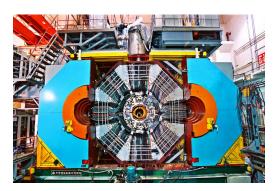

History of LLRF at IHEP LLRF Applications of IHEP ADS Injector I and Main Linac SHB Future Applications

Summary

Institute of High Energy Physics



2.5GeV Linac


particle detector

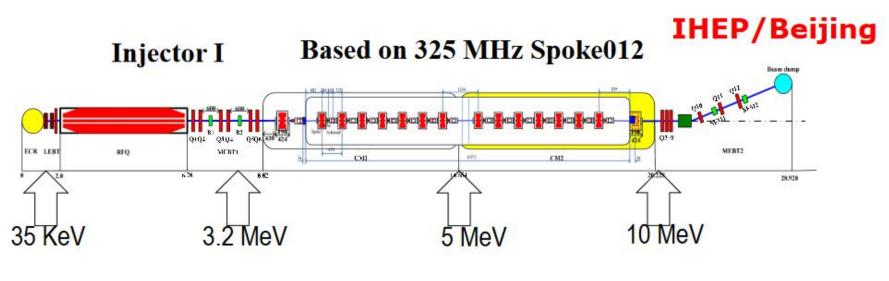
2.5GeV E-/E+ Collider / SR

space telescope

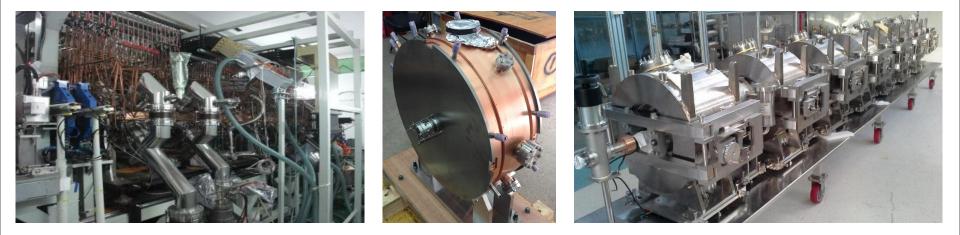
spallation neutron source

Brief History of LLRF at IHEP

- Before 2009, analog LLRF;
- Until 2012, digital LLRF hardware from many vendors: Altera, NI, ADLink, GE ...or customized;
- Communication bus/link: Ethernet, PCI, PXI, ...


Then ...From 2013, MicroTCA.4 adopted in LLRF, inroduced by DESY

- ADS Injector I and Main Linac


China Accelerator Driven Sub-critical System(ADS)

- Strategic Project to solve the nuclear waste problem in China;
- **1st Phase:** 10MeV CW proton injector and 25MeV main linac;
- IHEP build 325MHz Injector I : 1 RFQ + 2 Bunchers + CM1(7 spoke cavities) + CM2(7 SC cavities); and CM4(6 SC cavities)

Layout of ADS Injector I built by IHEP

ADS Injector I and Main Linac:

Parameter	Value	Parameter	Value	Parameter	Value	
Frequency (MHz) <i>QL</i> Injection energy (keV) Output energy (MeV) Beam current (mA) Beam duty factory (%)	325 ~7000 35 3.2 10 100	QL Particle energy (MeV) Beam current (mA) Beam duty factory (%)	325 ~12,000 3.2 10 100	Operation frequency (MHz) β_0 E_p/E_{acc} Q_{ext} R/Q	325 0.14 ~ 5 $\sim 5 \times 10^5$ ~ 150	
Fotal power (kW)<250Beam transmission (%)98.7	<250	Total power (kW) Effective voltage (kV) Tuner tuning range (kHz)	6.3 120 740	R/Q d f/dp (Hz/mbar) d f/dF (Hz/N)	~150 +40 60	

Main Parameters of RFQ, Buncher and Spoke Cavities

- ADS Injector I and Main Linac:
 - Struck SIS8300/SIS8900, 1xRFQ+2xBUN+CM1(7xSC)+CM2(7xSC);
 - First time MicroTCA.4 system used on SC Linac in China;

- □ Standard LLRF structure;
- LLRF controller is the same for all the cavities;
- Standalone RF front-end including LO&CLK module, up&down-converter;

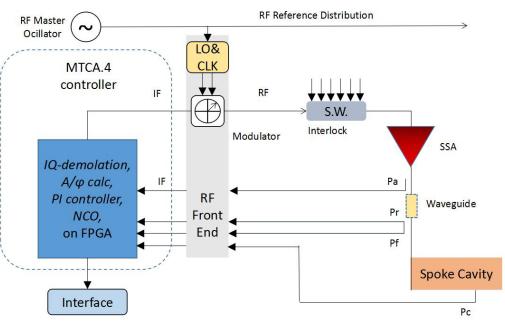
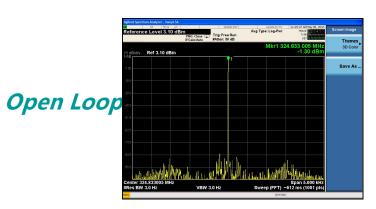


Diagram of LLRF system

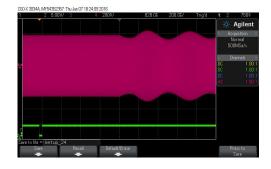
ADS Injector I and Main Linac:

............

Cabinets of LLRF for 14 SC cavities

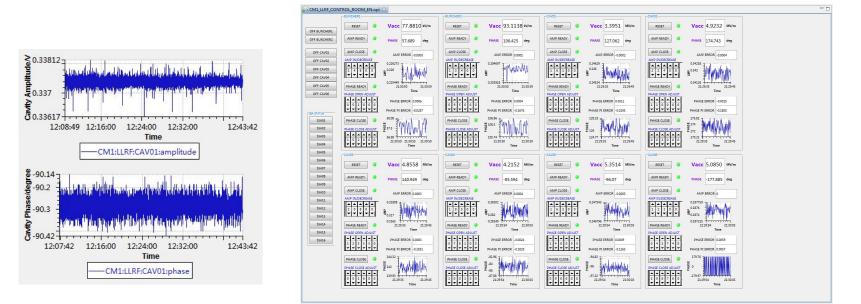

R. Liu, DESIGN AND COMMISSIONING OF LLRF SYSTEM FOR ADS PROJECT IN CHINA, IPAC2016 X. Ma, MICROTCA.4-BASEDLLRFSYSTEMFORSPOKECAVITIESOFC-ADS INJECTORI, IPAC2016

ADS Injector I and Main Linac:


Some performance results:

Close Loop

Agiler Acquisition Normal 500MSa/s



NHX 30345 MV54352357: Thu Jan 07 18 23 45 20

Feedback +Feedforward

ADS Injector I and Main Linac:

p-p stability:A/φ:0.3%/0.2deg

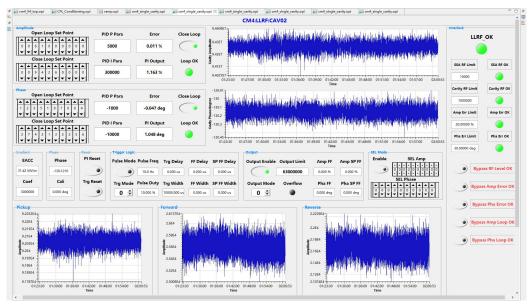
UI for operator

Cav. #	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Eacc (MV/m)	3.92	5.44	6.52	5.97	6.96	5.14	5.36	5.68	4.92	6.25	6.14	6.67	6.08	3.59

Acceleration field of SC cavities

March, 2017, Main Linac - CM4 started: 6 SIS8300L2/SIS8900;

- First application of SIS8300L2
- Firmware is upgrated to V2.0
 - multi-channels sig. monitoring
 - support work in CW or pulsed
 - support feedback and FF
 - support I/Q and A/φmode
 - support GDR and SEL mode
- support ramping, automatic
 phase scanning, automatic
 conditioning, add white noise, etc.



ADS Injector I and Main Linac:

- LLRF for CM4 fully delivered to the user;
- LLRF is very robust during >1 year beam operation;

Cryomodule4 @ Main Linac

UI of LLRF for CM4

ADS Injector I and Main Linac: Beam achievement.

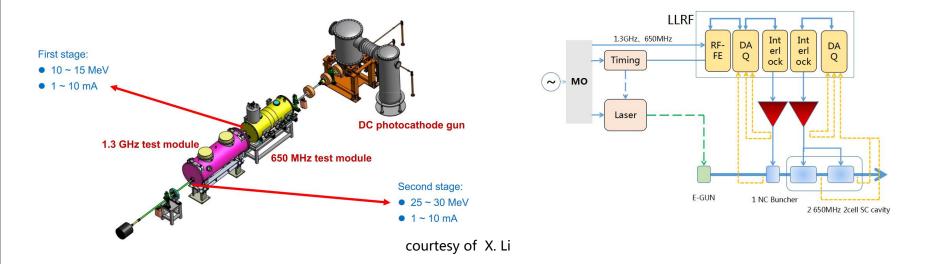
- Sep. 2014, The ECR Source+LEBT+RFQ has been commissioned with Max.
 90% duty factor beam;
- □ Feb. 2015, MicroTCA hardware LLRF are implemented;
- □ Oct. 2015, The CM1 output reached 6MeV/10mA/30us beam @2K;
- □ Jan. 2016, The CM1 output reached 6MeV/10mA/1ms beam @2K;
- □ July 2016, The CM2 output reached 10.1MeV/10.6 mA/20µs/20Hz beam @2K , transmission efficiency is 100%.
- □ Jan. 2017, The CM2 output reached 10MeV/2.1mA CW beam @2K;
- □ Apr. 2017, LLRF hardware/firmware upgrated and implemented on CM4;
- June 2017, The CM4 output reached 25.0MeV/0.15mA CW proton beam @4K;

- **BEPCII Sub Harmonic Bunchers**

BEPCII SHB NC Bunchers

- Normal conducting pill-box cavities on BEPCII Linac
- 2 SIS8300L2/SIS8900 boards for 2 Sub-Harmonic Bunchers of E-Linac
- Frequency: 142.8MHz and 571.2MHz; PPS:1-50Hz;

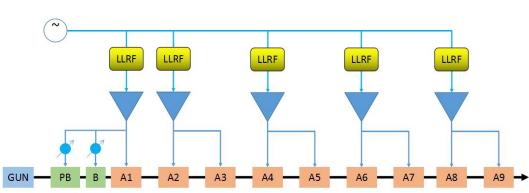
Parameter	SHB1	SHB2	Unit
f ₀	142.8	571.2	MHz
Q ₀	~8175	~13629	/
Power	10	7	kW
Pulse width	60	60	us
Rep. Rate	1-50	1-50	Hz
shunt imped ance	1.4	3.0	MΩ



Future applications

Platform of Advanced Photon Source Technology R&D

- Test facility for future Photon Source, XFEL/XERL;
- 1.3GHz buncher, two 650MHz 2-cell SC cavities in one CM;
- High requirement: amplitude 0.01%rms, phase 0.01°rms;
- One MicroTCA.4 based LLRF Crate is needed;



HEPS High Energy Photon Source

- 6GeV photon source;
- LLRF for the 500MeV e-linac injector use MicroTCA.4 platform;
- 5 sets of LLRF controller for 5 S-band klystrons and acc tubes;
- Project starts this month;

- MicroTCA.4 standard hardware platform has been successfully used in the LLRF system for ADS Injector I and main linac, also used on SHB cavities of the BEPCII E-Linac;
- MicroTCA.4-based LLRF will be used in the PAPS, HEPS Project at IHEP in the next future;

Thank you for your attention!