Adaption Cabinet to Crate Cooling

Cooling Strategies

Ralf Waldt/FAE December 06, 2018 MTCA Workshop 2018

Agenda

- Planning cooling concept
- Calculation of the total heat dissipation
- Cooling solutions on crate level
- Cooling solutions on cabinet level
- Crate configuration vs cabinet cooling
- Additional considerations
- Thermal simulation
- Conclusion

Planning cooling concept

The planning of a cabinet cooling concept requires to considered different items for an optimal cooling concept

- Cooling concepts of all integrated crates
- Total heat dissipation of all integrated crates
- > Max. acceptable temperature increase
- Environmental conditions (temperature, dust, IP protection, etc.)
- Infrastructure (installation site)
- Noise requirements
- Redundancy
- Emergency concepts

Calculation of total heat dissipation

EXAMPLE:

POWER LOSSES IN A MTCA.4.1 CRATE

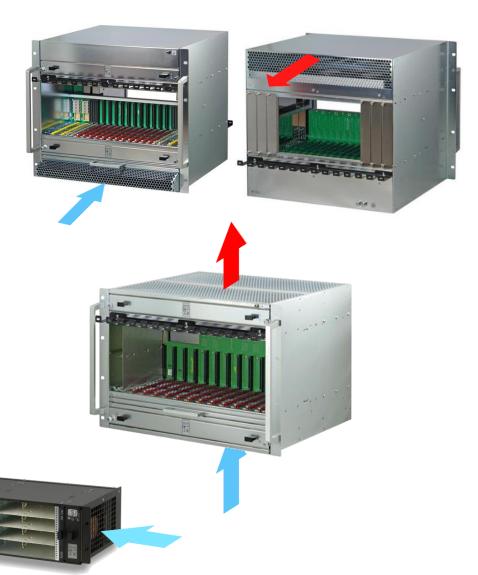
- 12x >80 W per AMC / RTM slot -> > 1000 W heat dissipation
- 2x MCH + RTM -> 160 W
- 2x Cooling units -> 160 W
- Power modules (88% efficiency) ~ 300 W heat dissipation

=> Crate heat dissipation > 1.6 kW

POWER LOSSES IN THE WHOLE CABINET

3 MTCA Crates + other Electronics

=> Cabinet heat dissipation 5 to 10 kW


Cooling solutions on crate level

Common cooling concepts for crates

Front-to rear air flow

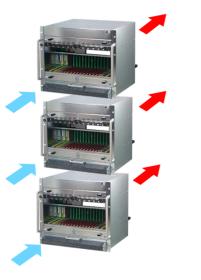
Bottom-to-top cooling air flow

Right-to-left air flow

Cooling concepts on cabinet level

Product	Plain cabinet	Raised top cover, vent slots	Perforated doors	19" fans, top cover fans
Cooling concept				
Description	01105060 Natural convection through radiation	01105058 Free convection through top cover opening	or 1105056 Free convection through opening in the doors/rear panels	Air cooling
Type of protection	≤ IP 55	≤ IP 20	≤ IP 20	≤ IP 20
Noise level approx.	0	0	55 65 dB(A)	34 67 dB(A)
Ambient conditions	$T_i > T_a$	$T_i > T_a$	T _i > T _a	T _i > T _a
Cooling capacity approx ¹⁾	< 500 W	500 W 800 W	500 W 6000 W ²⁾	< 2000 W

1) depending on cabinet size, electronic components, location and room cooling concept 2) > 800 W are only possible with own, active cooling through components T_i = cabinet inner temperature T_a = cabinet ambient temperature

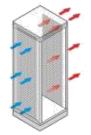

Cooling concepts on cabinet level

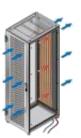
Product	Air filtered fan	Climate equipment	Air / water heat exchanger LHX 3	Air / water-heat exchanger LHX 20/40	Door cooler with integrated air / water heat exchanger
Cooling concept Description	OT 102050 Cooling	otitosofi Cooling	Air conditioner	01005081 Cooling	The air flow is pushed by
	with air	with air		with water	the fans of the crates
Type of protection	≤ IP 54	≥ IP 55	≥ IP 55	≥ IP 55	≤ IP 20
Noise level approx.	39 71 dB(A)	60 81 dB(A)	45,2 dB(A)	50 70 dB(A)	0 dB(A)
Ambient conditions	T _i > T _a	$T_a \le 55^{\circ}C$	$T_a \le 70^{\circ}C$	$T_a \le 70^{\circ}C$	$T_i > T_a$
Cooling capacity approx. ¹⁾	< 1500 W	<2600 W	< 3000 W	< 40000 W	< 15000 W

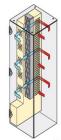
1) depending on cabinet size, electronic components , location and room cooling concept T_i = cabinet inner temperature T_a = cabinet ambient temperature

Cabinet configuration only with crates

front-to rear air flow

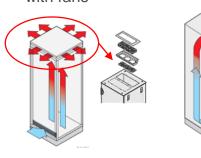

Cabinet cooling


Best solutions


Perforated doors

Rear door cooler

Air/water heat exchanger



- High cooling efficiency due to low air resistance.
- Easy to separate the cold and the warm air area with air baffles beside the 19" frame.

Further solutions but with lower efficiency

Raised top cover Climatic equipment with fans

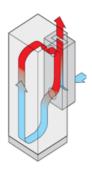
Additional bypasses for air flow necessary are reducing the efficiency

-> Higher input power required

-> Higher noise level

Cabinet configuration only with Cabinet cooling

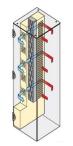
crates bottom-to-top air flow



Best solutions

Raised top cover with fans

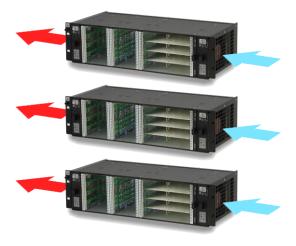
Air/water heat exchanger


Climatic equipment

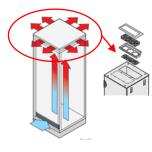
- High cooling efficiency due to low air resistance.
- Easy to separate the cold and the warm air area with air baffles beside the 19" frame.

Further solutions but with lower efficiency

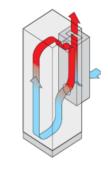
Air/water heat exchanger



Additional bypasses for air flow necessary are reducing the efficiency -> Higher input power required

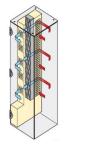

Cabinet configuration only with Cabinet cooling

crates right-to-left air flow



Best solutions

Raised top cover with fans


Climatic equipment

- High cooling efficiency due to low air resistance.
- Easy to separate the cold and the warm air area with air baffles beside the 19" frame.

Further solutions but with lower efficiency

Air/water heat exchanger

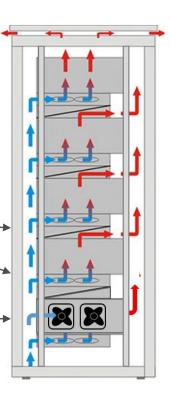
Additional bypasses for air flow necessary are reducing the efficiency -> Higher input power required

-> Higher noise level

Cabinet configuration with different cooling concepts of the crate are the worst case

Cabinet cooling

- High efforts to separate the cold air flow and the warm air flow.
- Additional bypasses for air flow necessary are reducing the efficiency
- -> Higher input power required
- -> Higher noise level

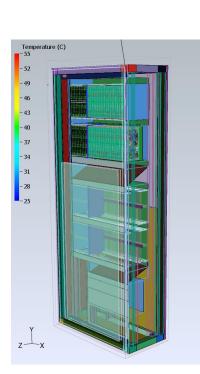

Workaround

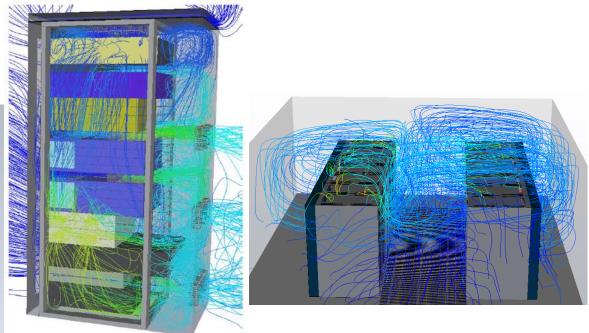
-> Lower assembly space due to additional air guiding components

Addional considerations

- > Air filter a providing an air resistance and reducing the air volume
- Infrastructure (installation site): What cooling solution are fitting to the installation site in view of space, temperature, humidity, etc. Is water connection available?
- Redundancy: Power, cooling, etc.
- > Emergency concepts: Door opening, alternative cooling concept, shutters, etc.

Thermal Simulation

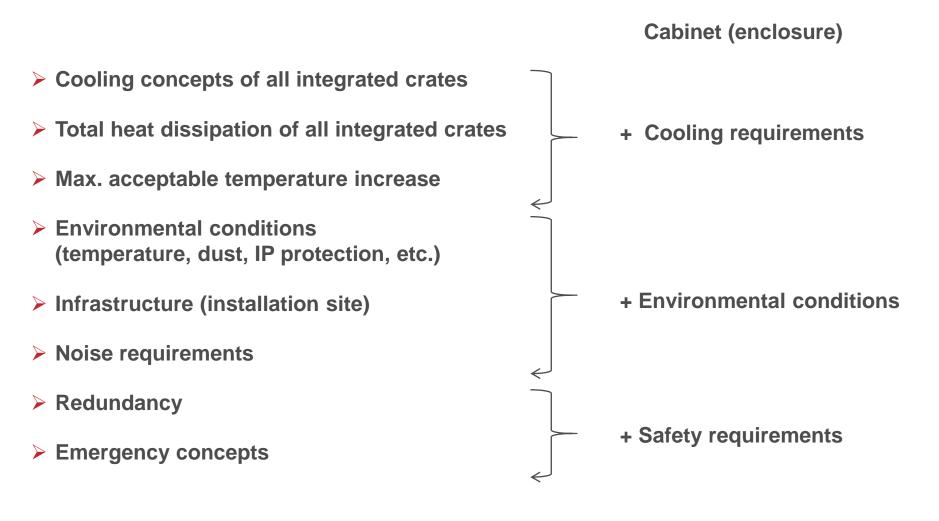

Thermal simulation will provide proper support for designing the optimal cooling concept especially for critical applications.


Simulation critireas:

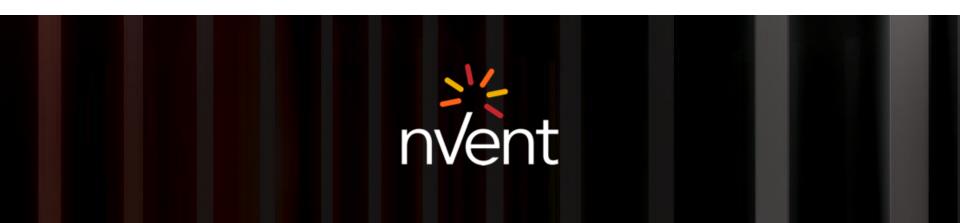
➤ Air flow

Velocity

Pressure



The results of the thermal simulation are platform for further decisions.



Conclusion

= Cooling solution

