
Overview, experience and first results of MTCA applications at European XFEL Experiments

Bruno Fernandes Advanced Electronics

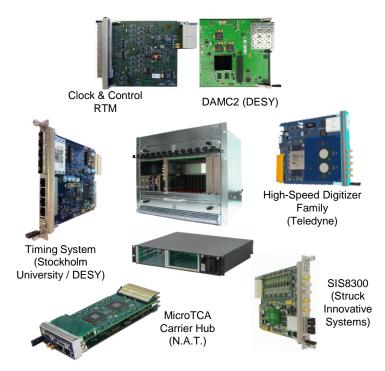
Hamburg, 6 December 2018

XFEL Overview

The European XFEL generates up to 2700 X-Ray pulses

- Inter pulse separation of 220 ns
- Train repetition of 10 Hz

First user operation started in September 2017


Lasing in all three Undulators simultaneously

3

Installation went smoothly

- At photon beam lines, experiments and related laboratories at XFEL are **34 MicroTCA crates**
 - A lot of challenges had to be overcome and we are still learning
- MicroTCA platform is the key component for
 - Timing distribution (both in and outside the crate)
 - Digitizer raw and process data
 - Detector triggering and synchronization
 - As such we must have
 - Workflows for installation, monitoring and diagnostics
 - Tools that allow us to quickly identify and solve problems
 - ► and also show that "MicroTCA is not the issue"



- MCHs use configuration files uploaded via browser interface
 - Most common options are covered by this procedure
 - Remote access via ssh, telnet and browser

Setup	NAT-MCH	Script M	lanager	nent			
Base Configuration JSM							
Switch BASE 1GbE Y	Download Configurations	5					
Age Time Port on/off	Startup Configuration :	nat me	h_startup_	cfg.txt 🚯			
Port VLAN 802.1Q VLAN	Running Configuration:		h_running				
802.1X 802.1p							
Port Mirroring Jumbo Frame	Load/Delete Configuratio	ns					
Link Aggregation Rapid Spanning Tree	Startup Configuration :	Load		0			
Serdes/SGMII	Startup Configuration :	Dele		ő			
Link Status	Curray Comgutation :	Dele		0			
BCM5396 counters Switch PCIe x48							
PCIe Virtual Switches	Upload Configuration						
Error Counters Link Status			1	-			
	1. Select local file:	Browse	No file sele	cted. 🚺			
laintenance	2. Select upload option:			ands@exflwgs	06		
Script Management	3. Submit upload:	Upload			00:~		
Board Information System Information			show_	fru			^
Reboot NAT-MCH	Verify Configuration		FDIT T	nformatior			
Update MCH			FR0 1				
Change Password N.A.T. Webpage	Select local file:	Browse	FRU	Device	State	Name	
Home		Verify					
			0	MCH	M4	NMCH-CM	
			3	mcmc1	M4	NAT-MCH-MCMC	
			5 7	AMC1 AMC3	M4 M4	CCT AM 902/411 X2TIMER	
			8	AMC3 AMC4	M4 M4	X2TIMER	
			9	AMC5	M1	DAMC2V3	
			10	AMC 6	M4	DAMC2V3	
			40	CU1	M4	Schroff uTCA CU	
			50	PM1	M4	NAT-PM-AC600D	
			60	Clock1	M4	MCH-Clock	
			61	HubMod1	M4	MCH-PCIe	
			93	AMC4-RTM	M4	X2TIMERRTM	
			94	AMC5-RTM		DAMC2RTM	
			95	AMC6-RTM	M4	DAMC2RTM	

4

Remote crate management

jDDD Panels to quickly verify content of crate and board sensors

Quick access to certain functions

Control Fans, reboot boards, control payload power...

AMC_generic.xml	TEST.CRATE/CA	AS-LAB-SY	s-l_ □ ×
AMC Module	NAMC-psT	imer	FRU info
Slot: 11 IPMB Addr: 134 FRU ID: 15 Manufacturer: N.A.	T.CRATE/CAS-L T. GmbH - Germar Nov 10 04:23:00	ıy	TC-1-M
HOTSWAP			
SENSOR1			
SENSOR2			
degrees C] Temperature 34.0	25		
31.0 29.0 27.0 25.0 23.0 19.11. 22.11. 2 2018 2018 2 Volts] Voltages	5.11. 28.11. 2018 2018	1.12. 2018	5.12. 2018
			
	4.11. 27.11. 2018 2018	30.11. 2018	4.12. 2018
	Payload		
P	orts and interfaces		
Control functions:	Cold Reset	Reb	oot
12V payload power :	Activate	Deac	livate

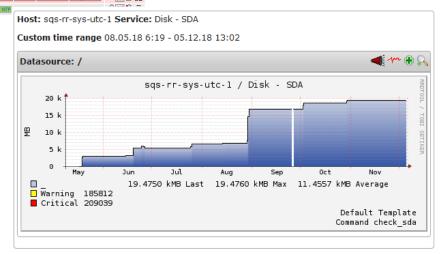
CPU installation with Foreman and Puppet

- OS installation + Puppet via network
 New CPU shows up on Network
 Foreman install OS and configures target Puppet Manifest
- Monitor Host resources

Software, drivers, repositories, users, groups, permissions, network, etc.

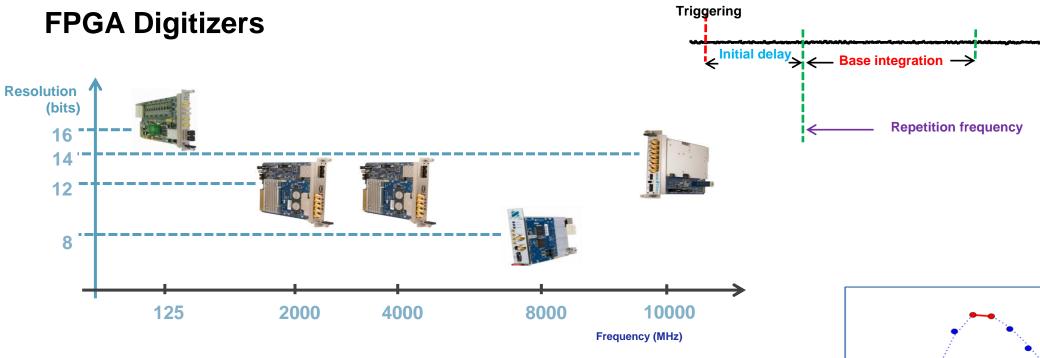
Different system types – tunnel, laboratories, rack room, development, instruments....

Nagios monitoring

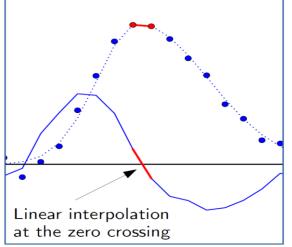

- Automatically send emails for the following situations:
 - CPU/MCH down
 - CPU Temperature/Sensors at critical level
 - Hard disk almost full /Temperature
 - NTP service running
 - SSH service running

European XFEL

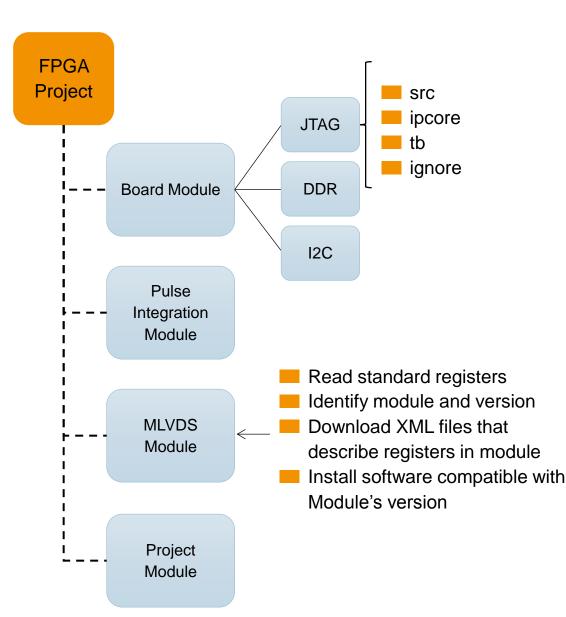
Nagios[®] Status Grid For All Host Groups UTCA in XHEXP (utca-control) Documentatio fxe-rr-sys-utc-1 Current Status fxe-rr-sys-utc-3 Tactical Overview hed-ont-sys-utr Map (Legacy) Hosts 🔒 品 mid-rr-sys-uto Services S- 84 Host Groups sa1-br-sv Summary sa1-xtd2-svs-utc Grid Service Groups sa1_vtd2_svs_u Summary Grid Problems sa1-xtd9-sy Services (Unhandled Hosts (Unhandled) sa2-br-svs-utc <u> 🔒</u> 品 Network Outage 옥 유 Quick Search es2_vtd6_eve_ sa2-xtd6-svs Availability Trends (Legacy sa3-br-sys-u Alerts 84 se3_vtd10 History Summan Histogram (Legacy) Notifications sa3_xtd10_svs Event Log System scs-rr-sys-ut Comments 🔒 品 spb-exp-sys-uto Downtime Process Info 요 문 spb-rr-sys-utc-Performance Inf 🔒 🗛 Scheduling Queu spb-rr-sys-uto Configuration ٩. 🖉 📢 sas-exp-sys-ut


sas-rr-sys-utc-

SMS sent to On call Duty phones
Immediate reaction to problems

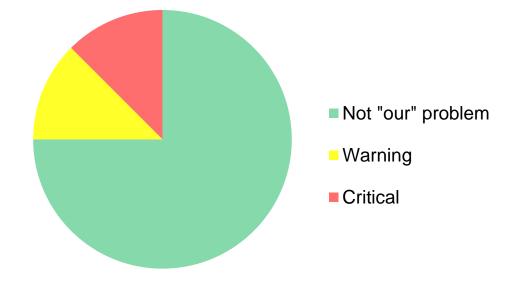

Upper value

Pulse integration


Hardware Signal Processing

- Most colleagues are right now interested in the raw data
- **Peak Integration**, **Peak Detection**, Zero Surpression

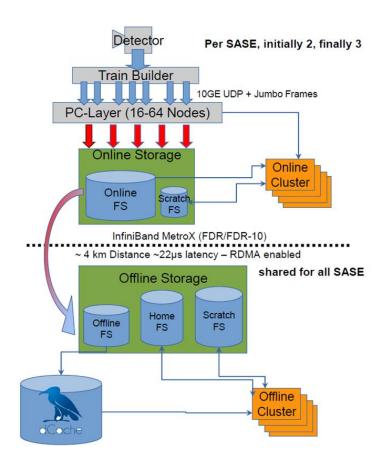
FPGA Development


- FPGA development will increase in the near future as colleagues get more and more familiar with the data
 Specialized FPGA projects per instrument group/experience
 - Process of migration to GIT
 - Standard folder structure for both Modules and Board projects
 - Scripts to automatize generation of FPGA configuration files depending on requirements
 - Use of GIT submodules for FPGA modules
 - Standard Structure of FPGA projects
 Automatic installation of software devices to communicate with the hardware and its modules

One year in operation

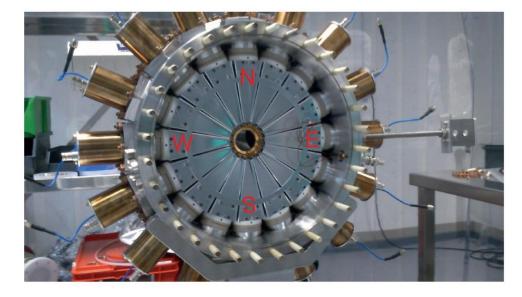
The MicroTCA On Call duty has significant low activity when compared to other XFEL groups
 In total there were 8 calls made to our group first year of operation

Stability of MicroTCA and XFEL's FPGA solutions


XFEL Applications

Karabo integration

XFEL		THETA 1 Crystal angle 18.828211 THETA 2 Enc/deg 0.000336
POWER	DeviceID PD_BIAS ON	
ON	x 10V (must be negative)	Beam offset THETA1 18.55 mm
On Off	Bias / V 0.0 0.00	P_OVERLOAD On Off DeviceID LVDT X
		Stop Value 1.54485
DeviceID AMP_GAIN_BIT0	DeviceID AMP_GAIN_BIT1 DeviceID AMP_GAIN_BIT2 DeviceID AMP	P_SPEED Pos/mm 45.622
OFF	OFF OFF OF	F Motor 4,99999 mn EPS
On Off	On Off On Off On	Off TargetPos 5 mm 5.0 mm SWITCH X
PIN DIODE (Channel 2)	Start Stop HI Image: Computation Image: Computation	FullRange Detail 10 %
33.800	Start of Baseline 0 0	
33,600	End of Baseline 300 300	s,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
533,400	Pulse Period 10 10	
월 33,200 -	Peak Samples 3 3	-10,000
<u> 년</u> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
1 5 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Number of pulses 1	
	Number of pulses 1 1 Pulse Delay 502 502	-15,000


Data storage via XFEL DAQ System

- Digitizer data from SQS group
 - Commissioning: 8020.78 GB (few months)
 - First user beam time: **5139.58 GB** (5 shifts)

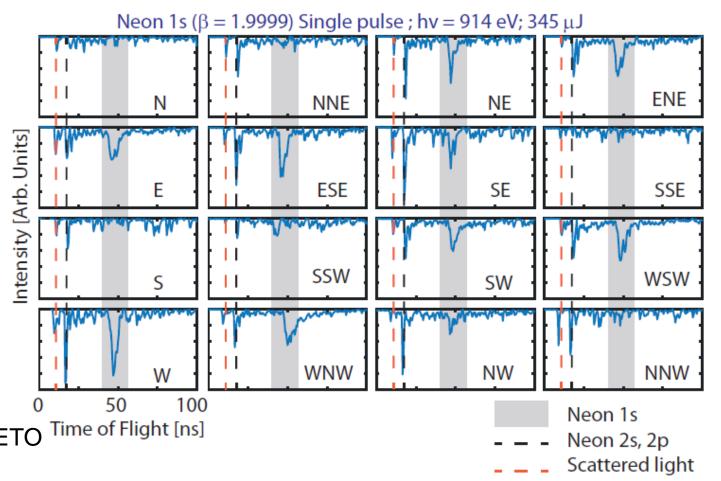
Diagnostics Group - PES

- Photo-Electron Spectrometer (PES): Pulse resolve information
 - Spectral distribution and (Horizontal) Polarization
 - On each Dirfttube (N, NNE, NE, E...) a voltage is applied
 - Target gas is injected, an X-Ray pulse ionizes it and photo electrons are ejected anisotropically
 - Small fraction are register by the detectors
 Based on time of flight, time difference between ionization to detection related kinetic energy of particle

Diagnostics Group - PES

Polarimetry

- Accomplish with Auger Lines
- Data collected from single bunch mode
 Polarization P is given by


$$P(\theta) = 1 + \frac{\beta}{4} (1 + 3P_{Lin} \cos(2(\theta - \psi)))$$

Perfect horizontal :

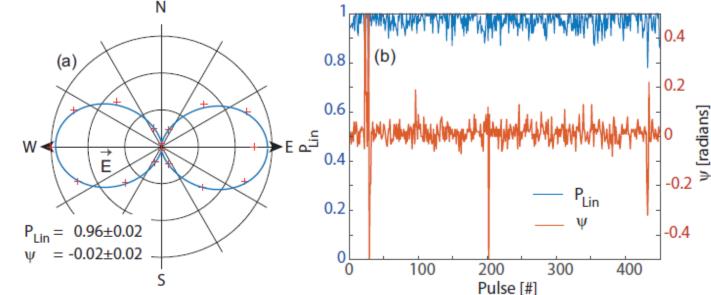
 $PLin = 1 and \Psi = 0$

Integral after background subtraction of Neon 1s is marked in a polar plot

This information could also be use for VETO Time of F systems

Diagnostics Group - PES

Polarimetry


- Accomplish with Auger Lines
- Data collected from single bunch modePolarization P is given by

$$P(\theta) = 1 + \frac{\beta}{4} (1 + 3P_{Lin} \cos(2(\theta - \psi))).$$

Perfect horizontal :

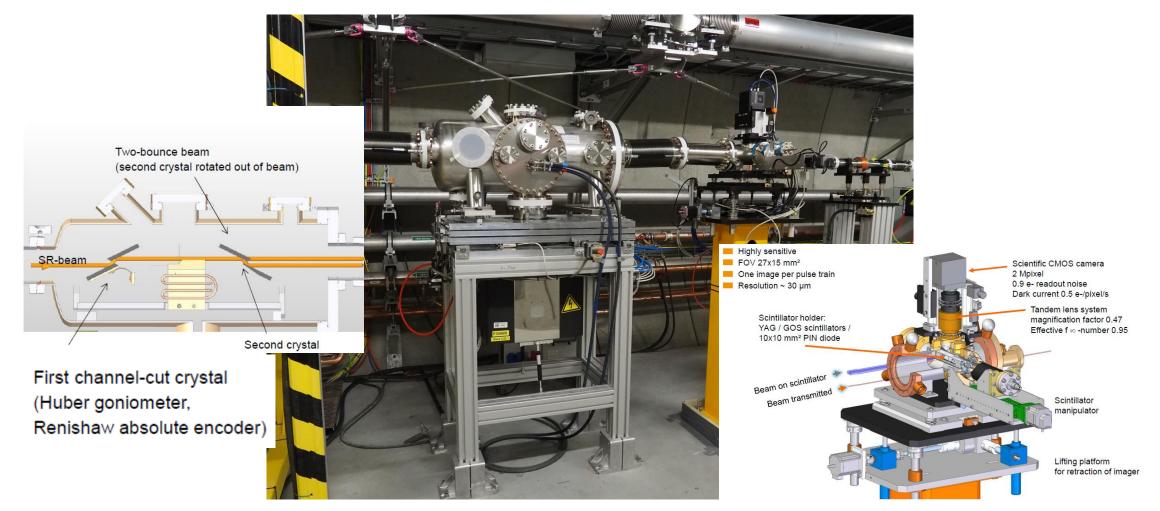
 $PLin = 1 \text{ and } \Psi = 0$

 Integral after background subtraction of Neon 1s is marked in a polar plot
 This information could also be use for VETO systems



Thanks for the attention

bruno.fernandes@xfel.eu

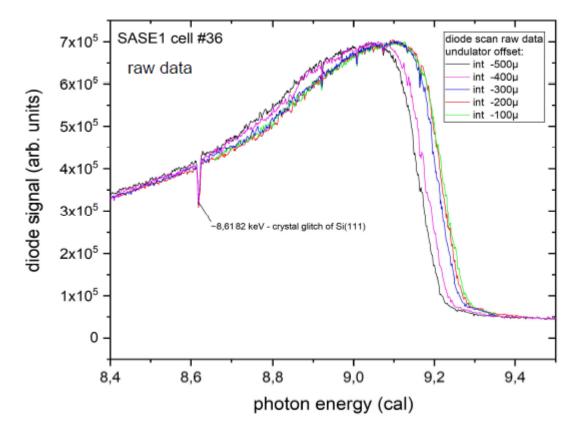


Diagnostics Group – K-Monochromator

Diagnostics Group – K-Monochromator

Gap tuning method or the relative adjustment of undulator segments: measure photon energy of spontaneous radiation **of each undulator segment**, to calculate and adjust the K-parameters within an accuracy required for FEL operation

- Monochromatized beam detection
- Scan perform "on the fly": goniometer is moving continuously
 - For each pulse Train, data is stored
- Spectral Shape → information about the homogeneity of magnetic structure

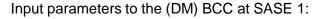

		IMGSR	Crystal angle 18.828211
viceID PD_POWER	DeviceID PD_BIAS ON	FILTER_OVERVIEW	THETA 2 Enc/deg 0.000336 Beam offset THETA1 18.55 mm
ON	x 10V (Bias / V 0.0 0.00	(must be negative)	
On Off	,		D On Off DeviceID LVDT X Stop Value[1,54485
viceID AMP_GAIN_BIT0	DeviceID AMP_GAIN_BIT1	DeviceID AMP_GAIN_BIT2 DeviceID AMP_SPEED	Move Pos/mm 45.622
OFF	OFF	OFF OFF	Motor 4.99999 mn
On Off	On Off	On Off On Off	TargetPos 5 mm 5.0 mm SWITCH >
PIN DIODE (Channel 2	2) Start Stop		Full Range Detail 10 %
PIN DIODE (Channel 2	2) Start Stop	Enable Peak Computation 🔵 🥑	
		Enable Peak Computation 🔵 🥃	Full Range Detail 10 %
25,000			
		Start of Baseline	
25,000		Start of Baseline 0 0 End of Baseline 300 300	Mean Peak Value
25,000		Start of Baseline 0 0 End of Baseline 300 300 Pulse Period 10 10	
25,000 - 15,000 -		Start of Baseline 0 0 End of Baseline 300 300 Pulse Period 10 10 Peak Samples 3 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25,000 - 15,000 -		Start of Baseline 0 0 End of Baseline 300 300 Pulse Period 10 10 Peak Samples 3 3 Number of pulses 1 1	Mean Peak Value

17

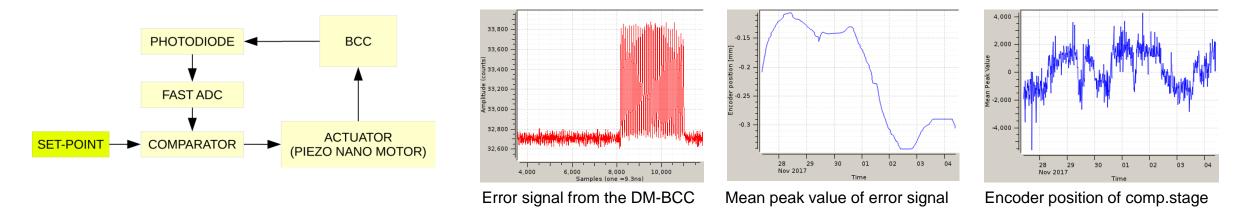
Diagnostics Group – K-Monochromator

Gap tuning method or the relative adjustment of undulator segments: measure photon energy of spontaneous radiation **of each undulator segment**, to calculate and adjust the K-parameters within an accuracy required for FEL operation

- Monochromatized beam detection
- Scan perform "on the fly": goniometer is moving continuously
 - For each pulse Train, data is stored
- Spectral Shape → information about the homogeneity of magnetic structure



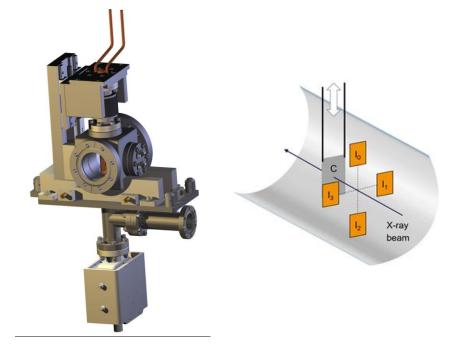
Optical Laser Group – Timing drift/jitter compensation


- Balanced Cross-Correlation
 - two cross correlators (CCs), with the same configuration
 - Used for compensation of Timing drift/jitter
- In both CCs, the temporal delays, and the amplitudes of signals are adjusted equally.
- The timing error signal is the subtraction of the signals from CC1 and CC2.
- The error signal is proportional to the timing drift.
- Cross-correlation 800 or 1030nm Cross correlation function $\Delta t \sim 10^2$ fs $\tau \sim 10^{2-3}$ fs Pulse1 Pulse2 t (fs) At (fs) Balanced cross-correlation Balanced cross-correlation CC1 ∆t~300 fs Pulse a Pulse b CC1-CC2 CC2 ∆t~300 fs Pulse b / \ Pulse a t (fs)

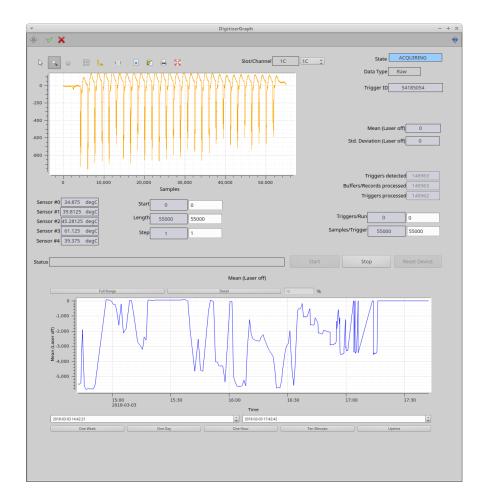
∆t (fs)

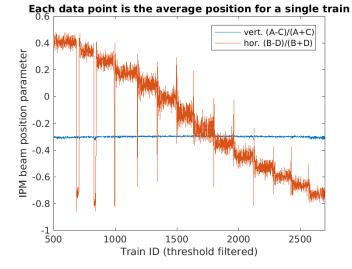
Optical Laser Laboratory

- XF1: 10Hz, 27us, 1.1MHz, ~ 900fs, 7nJ/p;
- XF2: 20Hz, 5.94ms, 4.5MHz, ~ 300fs, 1nJ/p.


The pump probe laser in SASE1 is already equipped with one CM- and two DM-BCCs. The operation was successful.

Slow timing drifts are well measured and compensated, like thermal expansion, humidity change, etc. with **an accuracy of** ~ **fs**


FXE Group – Intensity Monitor (IPM)


- Measurement of integrated intensity of the beam and the corresponding centre of mass position
 - relies on the efficient detection of backscattered X-ray photons from a very thin foil of CVD diamond material
 - the detection of the backscattered X-ray photons is realized using 4 photodiodes (PD)
 - All four PDs collect the backscattered radiation from the foil and yield the integrated incident intensity by integrating the output current from the detectors
 comparing the difference of the individual signals from
 - each diode, one can obtain the position of the beam in the plane perpendicular to the beam direction

Measurements use ADQ412 from SP Devices

FXE Group – Intensity Monitor (IPM)

train-to-train beam position comparison **of each pulse within the train**. It is clear to see that the first few pulses are much more jittering than the later ones the vertical position does not change, while the beam is moved horizontally with M3 pitch, giving a continuously decreasing value on the IPM. Spikes in the horizontal position are due to the backlash correction.

