

7th MTCA Workshop for Industry and Research

IDXDSS TECHNOLOGIES RELIABILITY BY DESIGN

RELIABILITY BY DESIGN

State of the art technology at the service of High Energy Physics

Company Overview

7th MTCA Workshop for Industry and Research

Founded in 2007 close to Geneva COTS for RT Control Systems in √ High Energy Physics √ Aerospace $\sqrt{\text{Transport}}$ FPGA centric platforms ✓ High degree of customization √ Performance √ Obsolescence proof

Why MicroTCA.4?

Why MicroTCA.4?

- Emergent open standard
- ✓ Main target: Accelerators and Large Experimental Physics
- Interoperability with other standards #FMC.
- ✓ Growing community of users and manufacturers
- ✓ High-speed serial interfaces over backplane
- ✓ Synchronization over backplane
- ✓ Improved modularity (µRTM)
- ✓ Monitoring & diagnostic
- ✓ Redundancy

VIIINX

7th MTCA Workshop for Industry and Research

THURSDARD.

7th MTCA Workshop for Industry and Research

A modular and long term available MicroTCA.4 ecosystem $\sqrt{MicroTCA.4}$ product line of AMCs and μ RTMs $\sqrt{Comprehensive family of FMC modules}$ √ FPGA Design Kits EPICS ✓ EPICS Integration Common to XILINX existing VME **Ecosystem!**

7th MTCA Workshop for Industry and Research

MTCA.4 Product Line of AMCs and µRTMs

7th MTCA Workshop for Industry and Research

IFC_1410 Intelligent FMC Carrier AMC

NXP QorlQ T2081 @ 1.8 GHz with AltiVec Xilinx Kintex UltraScale FPGA (KU040/KU060) Powered by TOSCA III FPGA Design Kit Local and remote configuration Dual HPC VITA 57.1 FMC slots Up to three PCI Express GEN3 blocks DESY D1.4-compliant RTM interface

MTCA.4 Product Line of AMCs and µRTMs

7th MTCA Workshop for Industry and Research

RSP_1461 Com Extender µRTM

One SFP Gigabit Ethernet Two SFP+ (10 Gigabit Ethernet) Four SFP+ (user-defined SerDes) Two SMA connectors for clock I/O Custom I/O mezzanine DESY D1.4-compliant RTM interface

MTCA.4 Product Line of AMCs and µRTMs

7th MTCA Workshop for Industry and Research

IFC_1420 High-Performance Digitizer AMC

NXP QorlQ T2081 @ 1.8 GHz with AltiVec Xilinx Kintex UltraScale FPGA (KU040/KU060) Powered by TOSCA III FPGA Design Kit Local and remote configuration Single HPC VITA 57.1 FMC slot Up to three PCI Express GEN3 blocks DESY A1-compliant RTM for analog signals

Customizable onboard DAQ function: √ 10 channels ADC 16-bit @ 250 Msps √ 4 channels DAC 16-bit @ 1.5 Gsps

7th MTCA Workshop for Industry and Research

omprehensive Family of FMC Modules

7th MTCA Workshop for Industry and Research

ADC_3110/3111 Fast ADC

8 channels ADC 16-bit @ 250 Msps AC or DC coupling inputs Clock & user-defined inputs

ADC_3112 Ultra-Fast ADC

4 channels ADC 12-bit @ 900 Msps (1 Gsps with oversampling) DC coupling inputs Clock & user-defined inputs

DAC_3113 Fast DAC

ADC_3117 High-Density

Dual channel ADC 16-bit @ 250 Msps Dual channel DAC 16-bit @ 250 Msps DC coupling Clock & user-defined inputs

20 channels ADC 16-bit @ 5 Msps 2 channels DAC 16-bit @ 1 Msps Single ended or differential inputs Clock & user-defined inputs

7th MTCA Workshop for Industry and Research

TOSCA FPGA Design Kit

7th MTCA Workshop for Industry and Research

Network on Chip (NoC) approach Optimized for Xilinx Kintex UltraScale devices Up to three PCI Express GEN3 blocks VHDL source code fully available Direct integration of FMC and AMC carriers Significant reduction of development time: \checkmark Focus on user application \checkmark Access to IOxOS Technologies IP library \checkmark User Area dedicated simulation environment \checkmark Reference designs Total integration within EPICS ecosystem

7th MTCA Workshop for Industry and Research

Some ongoing projects...

European Spallation Source (Sweden)

7th MTCA Workshop for Industry and Research

World's most powerful neutron source

Applications:
Neutron Beam Loss Monitor
Fast Beam Interlock System
RF – Local Protection System

EUROPEAN SPALLATION SOURCE

MYRRHA (Belgium)

7th MTCA Workshop for Industry and Research

1st prototype of nuclear installation driven by a proton accelerator to significantly reduce radioactive waste

Application: Low Level RF control system

7 Conclusions and 1 Thought

- ✓ Satisfactory performance and modularity
- ✓ Wide coverage of required control & diagnostics applications
- ✓ Some interoperability minor issues (MCH)
- ✓ Growing acceptance among users
- ✓ Increasing number of opportunities
- ✓ Solid alternative to historical form factors (VME)
- ✓ IOxOS roadmap will be strongly linked to MTCA.4
- \checkmark Efforts must be done to go beyond the field of physics

Questions & Answers

7th MTCA Workshop for Industry and Research

"Our mission is to help you build and maintain your next generation control system by providing state of the art technology and a proactive customer service"