Overview of DMCS Projects and MicroTCA.4 Developments

Dariusz Makowski

Aleksander Mielczarek Piotr Perek Aleksander Szubert Paweł Plewiński Grzegorz Jabłoński Wojciech Cichalewski Andrzej Napieralski

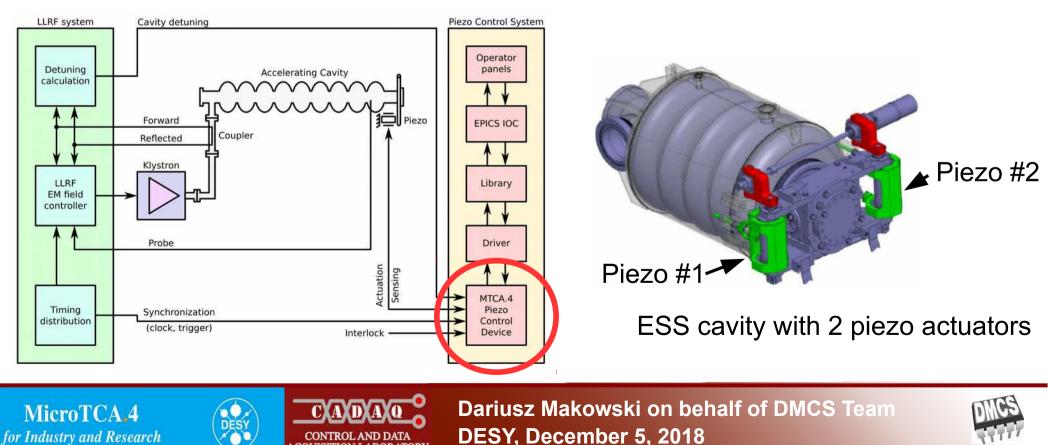
MicroTCA_4 for Industry and Research

kowski on behalf of DMCS Tean Imber 5, 2018

Agenda

- Introduction
- High-Power Piezo Driver for Accelerator Applications
- Management Controller Developments for xTCA Systems
- Image Acquisition and Processing System in MicroTCA.4
- Conclusions

High-Power Piezo Driver for Accelerator Applications



High Power Piezo Driver - Motivation

COLUSITION LABORATO

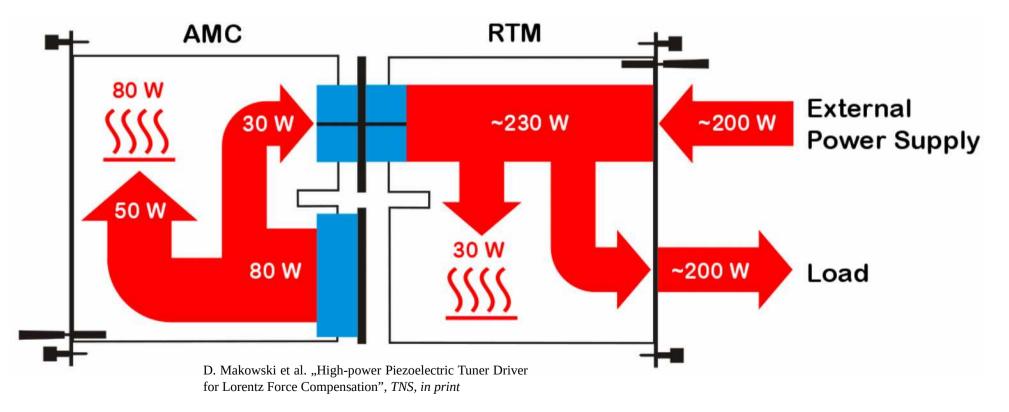
- This work is being done in frame of the Polish in-kind delivered by the Polish Electronic Group (PEG) within in-kind agreement signed between PEG and ESS on 2016-11-08, (together with Schedule AIK 8.2, signed 09.2017, ESS-0060409)
- Department of Microelectronics and Computer Science, Lodz University of Technology as a member of PEG consortium is responsible for piezo driver system delivery for elliptical cavities of ESS linac.

Piezo Actuators Planned for ESS Accelerator

Cavity type	Piezo actuator type		
Medium Beta cavities	Noliac NAC 2022 H30		
High Beta cavities	Noliac NAC 2022 H30		
Spoke cavities	Piezo #1: Noliac NAC2022-H90-A01 Piezo #2: PI PICMA P-888.91/51		

Piezo type	Noliac NAC 2022 H30	Noliac NAC 2022 H90	PI Stack 2x P-888.90 + 1x P-888.50
Dimensions	10 x 10 x 30 mm	10 x 10 x 90 mm	10 x 10 x 90 mm
Cell material	NCE51F	NCE51F	PIC252
Number of cells	15	45	
Total capacitance (room temp.)	5.54 µF ±15%	17.4 μF ±15%	32 μF ±20%
Total capacitance (cryo, 20 K)	~1.85 μF	~5.8 µF	~9.8 µF
Max. free stroke	46.2 μm	145.2 μm	94 µm
Blocking force	4200 N	4200 N	3600 N
Max. operating voltage	200 V (±100 V)	200 V (±100 V)	-20 to 120 V
Max. operating temperature	200°C	200°C	150°C

MicroTCA.4 for Industry and Research



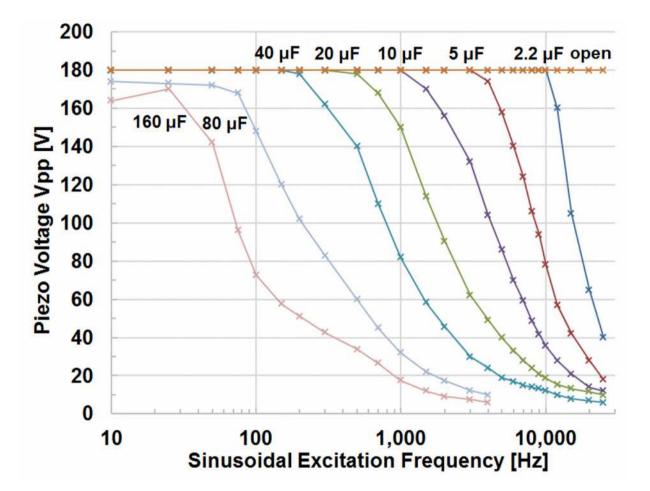
Challenges of Piezo Driver Implementation in MicroTCA.4 Form Factor

Decided to use solution III AMC + RTM card + External PSM

- 1. 5-10 Watts for Payload (from AMC)
- 2. Untimed power for Piezo Driver from external power supply
- 3. Limited piezo power by cooling capability to ~20-25 Watts

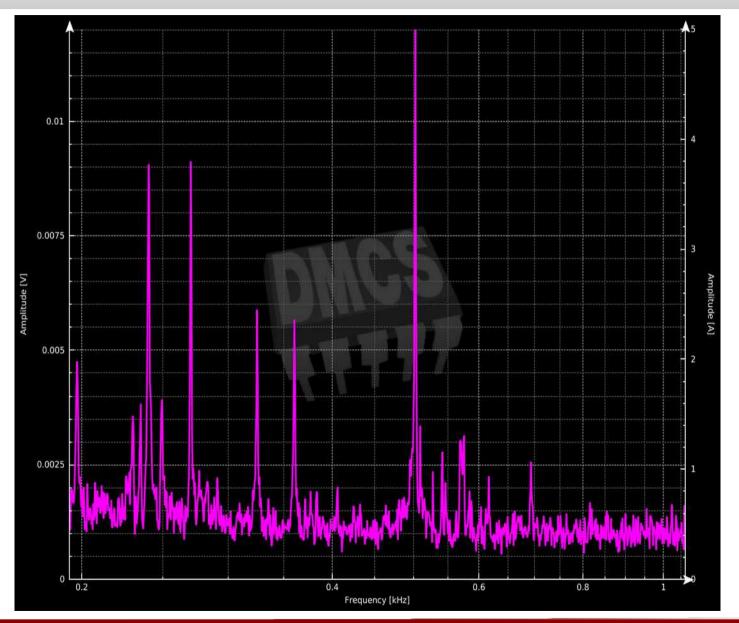
Piezo Driver RTM Module – Second Prototype

- Based on high efficiency Class-D amplifier (PWM)
- 2 channels available:
 - 2x 35 Watts (MTCA.4 power supply)
 - 2x 100 Watts (external power supply)
- Piezo driver and piezo sensor mode
- Build-in diagnostics (advanced implementation of RMC)
- Various protection mechanisms for both Piezo channels to protect driver itself and piezo actuator

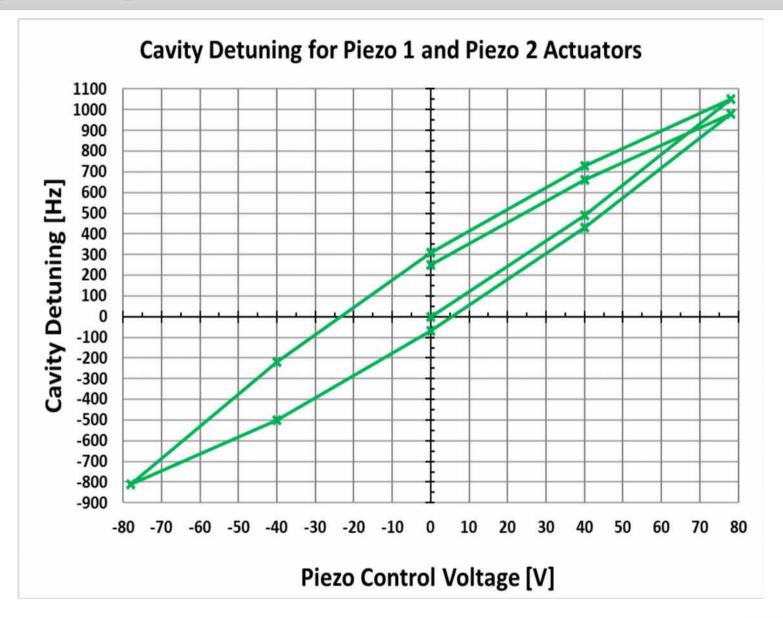


Piezo Control Device – SOA Characteristics

- Tested at laboratory conditions
- Single channel
 - Channel A as driver
 - Channel B as sensor
- 2.2 μF to 160 μF load
- Sinusoidal test signal
 - 10 pulses
 - 14 Hz repetition rate
- Various protections limit the maximum frequency of operation



Cavity Resonances [200 Hz – 1 kHz]



Cavity Detuning for Piezo 1 and Piezo 2 actuators

Interested – Visit our Poster

- Designed a two channel 2x 100 Watts PWM piezo driver prototype (HPD-200)
- Two solutions available:

MicroTCA 4

for Industry and Research

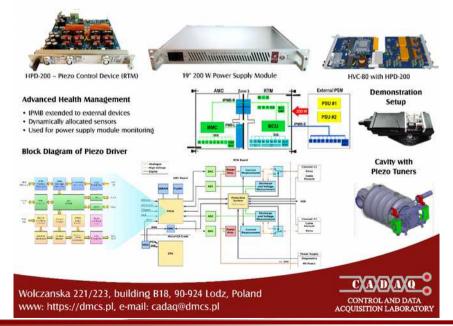
- Internal MicroTCA.4 and,
- External power supply
- Suitable for driving large piezo actuators (room temperature capacitance <160 µF)
- Prototype successfully tested in laboratory and cryo-conditions
- Initial compensation of LFD for elliptical cavity of ESS accelerator
- Starting pre-production and mass production next year

Lodz University of Technology Department of Microelectronics and Computer Science

A Typical Piezo Compensation System

High-Power Piezo Driver for Accelerator Applications

Dariusz Makowski, Aleksander Mielczarek, Piotr Perek, Grzegorz Jablonski, Aleksander Szubert, Pawel Plewinski, Wojciech Cichalewski, Andrzej Napieralski


Accelerating Cavity Detuning Compensation

- The cavity detuning can be easily calculated by an LLRF system
- Detuning compensation reduces power loss and helps maintaining the flat-top
- Main causes for the detuning are the Lorentz force and microphonics
- Compensation requires application of mechanical impulse to the cavity

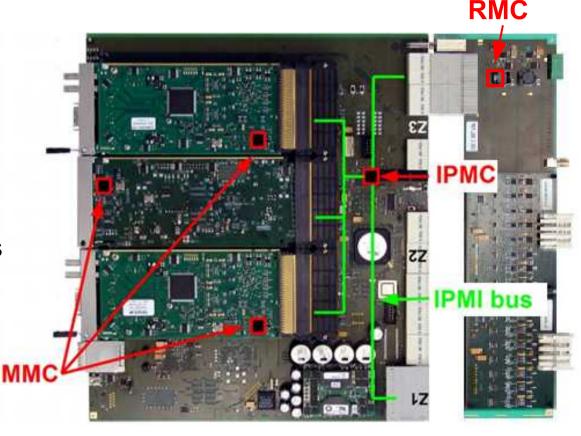
The actuation is done with piezoelectric elements

Piezo Compensation System Developed by DMCS

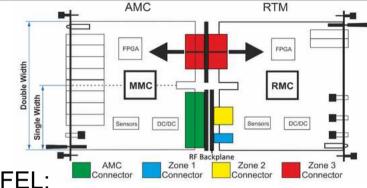
- System implemented almost completely in the MicroTCA.4 architecture
 Two channels, configurable in actuator or sensor mode
- Two channels, configurable in actuator or sen
 Safe discharge of the piezo-element
- Sale discharge of the piezo-element
 Up to 100 W per output channel, simultaneous operation possible
- Live monitoring of power delivered to the actuator
- Extensive health monitoring through IPMI

Management Controller Developments for xTCA Systems

Intelligent Platform Management Controller for AdvancedTCA

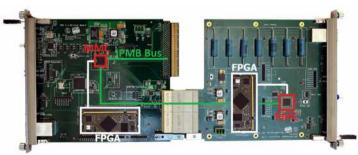

- AdvancedTCA board requires:
 - IPMC IPMI controller implemented on ATCA carrier
 - MMC controller needed on each AMC card
 - RTC controller on RTM card
- Various microcontrollers tests:
 - Atmel, NXP, Renesas
- IPMC final solution available with Renesas that offer 6 I2C controllers
 - Complex solution that requires a lot of work
- MMC mainly based on Atmel ATxmega
 - Much simpler than IPMC
- Time consuming and challenging task, but we learned a lot during this exercise

ATCA carrier with 3 AMC slots and RTM (before MTCA.4, <2007)


Development of MMC 1.0 solution for DESY

Unified solution for AMC and RTM cards

- Basic and Advanced versions available
- Includes hardware (schematics) and firmware
 - Microcontroller and CPLD
- Implemented on various AMC-RTM modules of E-XFEL:
 - TCK7, DAMC2, SIS8325, DS-800,...
 - VM2LF, DWC10, CLKFT, uLOG,...
- Available evaluation kits
- Based on previous work (AdvancedTCA)


Many new ideas implemented

- New RTM solution part of MicroTCA.4.1
- Monitoring and diagnostics
- RTM currents and voltages monitoring
- Support of PMBus DC/DC converters
- Payload management and monitoring

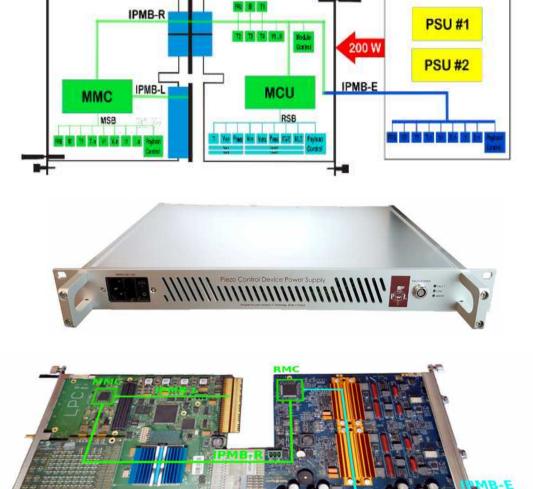
TCK7 and VM2 Devices

AMC and RTM Evaluation kits

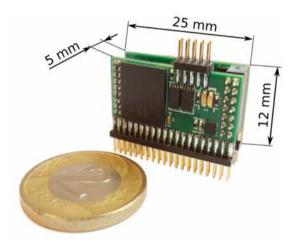
Zone 3

AMC

Extension of IPMI Management for MicrtoTCA.4


- Developing and testing new solutions
- Dynamic IPMI sensors for RTM
 - Available via IPMB-R
 - Requires RTM Management Controller
 - Implemented on Piezo Driver Module
- Management and control of External Piezo Power Supply
 - Diagnostics of external PPSM
 - Monitor temperatures
 - Monitor voltages
 - Monitor fans
 - Disable ±50 V voltage during hotplug:
 - AMC or RTM deactivated
 - AMC or RTM removed
 - Power supply cable removed
- FMC FRU support with unique ID

Dariusz Makowski on behalf of DMCS Team DESY, December 5, 2018

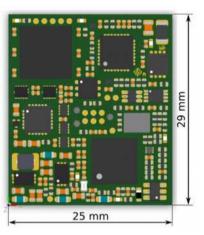


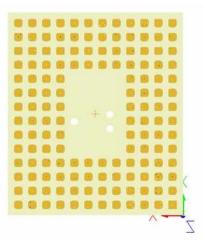
RTM

External PSM

MMC Integrated Module – TUL-DMCS Solution

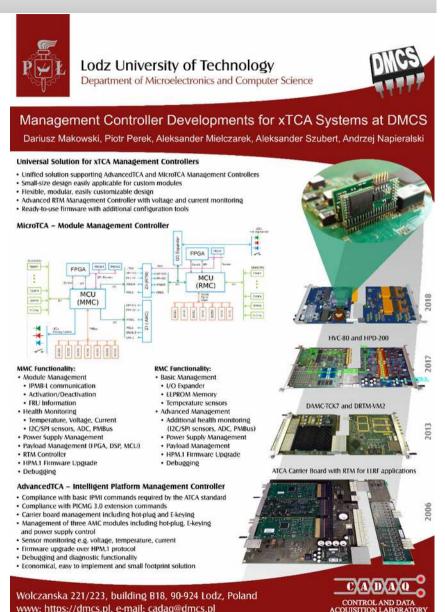
- Easy solution for MTCA.4 beginners
- Ready to use module with universal and customisable firmware
- Available two versions:
 - Basic only AMC support
 - Advanced extended RTM manager with diagnostics
- Based on ARM microcontroller and real-time OS
- Programmable unit for more advanced customisation
- Under testing on HVC-50 AMC module





MMC-Stamp Module – DESY Solution

- Project developed by TUL-DMCS for DESY
 - See M. Fenner presentation: "DESY MMC System on a Module and its Applications" for more details
- Smart solution:
 - Module Management Controller dedicated for AMC modules
 - Extended solution supporting RTM
 - Atmel ARM microcontroller
 - Programmable FPGA logic
 - Available 4x I2C controllers
 - Small size


Interested – Visit our Poster

- We developed solutions for:
 - AdvancedTCA
 - MicroTCA

MicroTCA₄

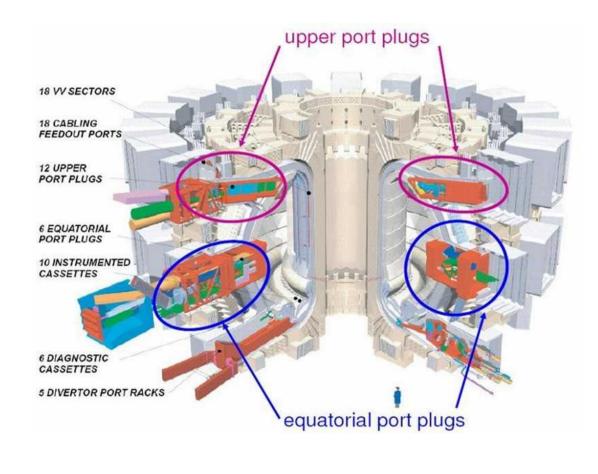
for Industry and Research

- A few versions available
- Working on small-size but still powerful solution for xTCA applications

www: https://dmcs.pl, e-mail: cadag@dmcs.pl

DESY

Image Acquisition and Processing System in MicroTCA.4



ITER Project

Challenges in design of imaging systems for plasma diagnostics:

- Plasma diagnostics monitor plasma temperature, density, radiative properties, first-wall resilience
- 200 cameras:
 - 1-8 Mpx @ 50-50000 FPS
- Throughput can easily exceed 8 Gb/s per camera
- Scalability and high reliability
- 50 ns synchronization accuracy

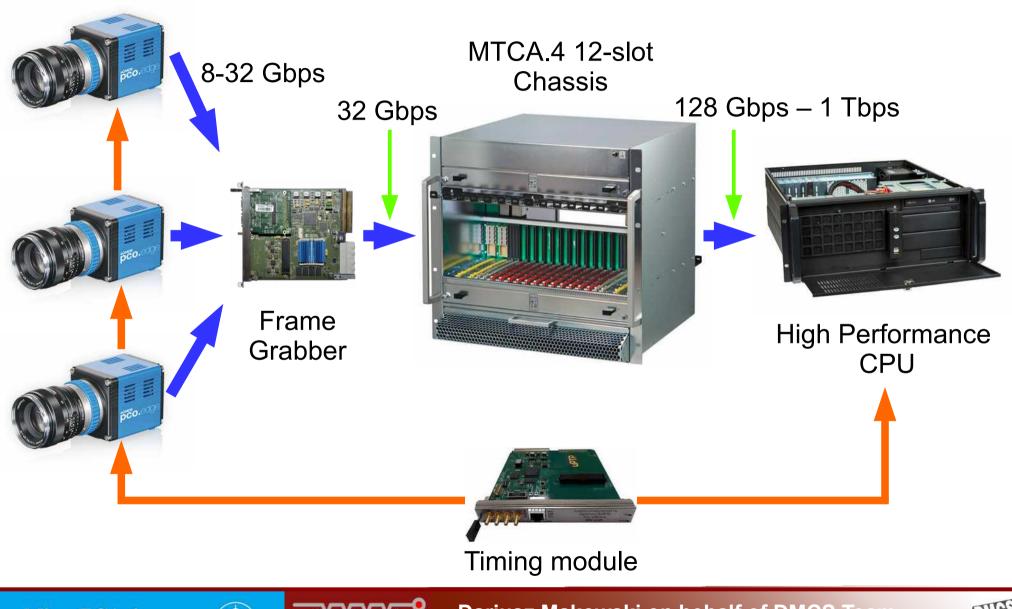

ITER Diagnostic Port Plugs

Image Acquisition and Processing with MTCA.4 – Our Solution

MicroTCA.4 for Industry and Research

Frame Grabber Card for MTCA.4

- Cost-effective solution for high-performance image acquisition systems
- Designed as FMC carrier module (HPC and LPC) with FMC extension modules:
 - Camera Link (Base, Full, Ext-Full)
 - Camera Link HS
 - CoaXPress
 - Universal IO module
 - Firmware support for selected protocols
- Provides all resources for data acquisition and control systems (FPGA processing power, SDRAM, clocks distribution, trigger and interlock signals)
- Based on Xilinx Artix 7 (XC7A200T) FPGA
- RTM Zone 3 connector (D1.2 Digital Class)

 Image Acquisition System with Full-Extended Camera Link

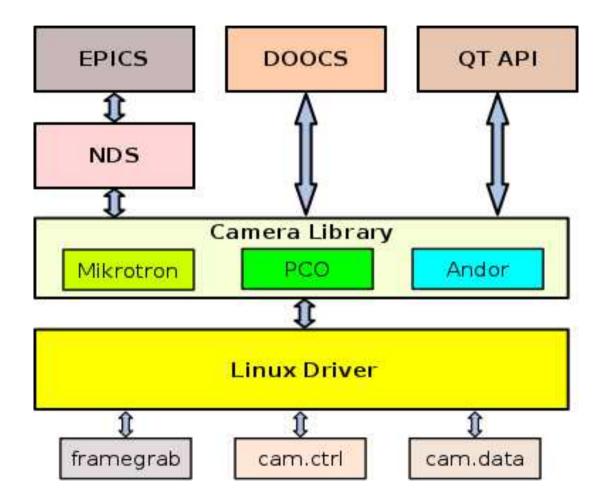
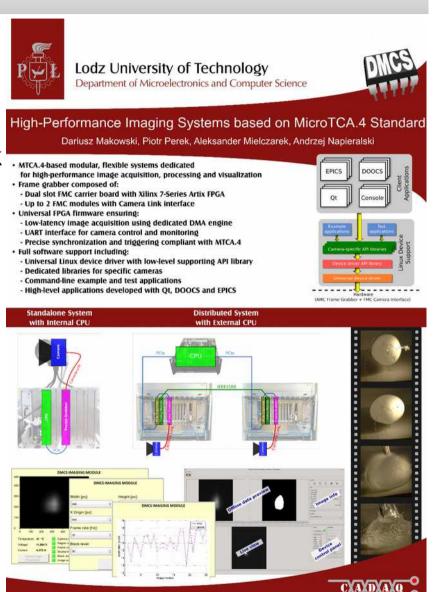


Image Acquisition System – Software Framework

- API for EPICS, DOOCS and QT
- Library for 3 cameras:
 - Microtron
 - > PCO
 - > Andor
- Available nodes:
 - Frame Grabber
 - Camera control
 - Camera image
- Linux driver and NDS library

HMI panels



Interested – Visit our Poster

- Developed a complete Image Acquisition System for MicroTCA.4
- Various cameras supported
- Scalable and configurable software framework
- Support for new cameras could be easily added
- We are open for collaboration

MicroTCA 4

for Industry and Research

Wolczanska 221/223, building B18, 90-924 Lodz, Poland www: https://dmcs.pl, e-mail: cadag@dmcs.pl

Dariusz Makowski on behalf of DMCS Team DESY, December 5, 2018

CONTROL AND DATA

Live Demo at TUL-DMCS Booth

Thank you for your attention

MicroTCA.4 for Industry and Research

