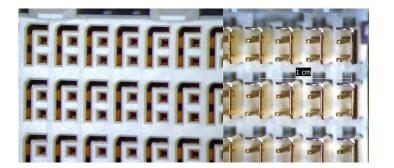
Johannes Zink

OUTLINE

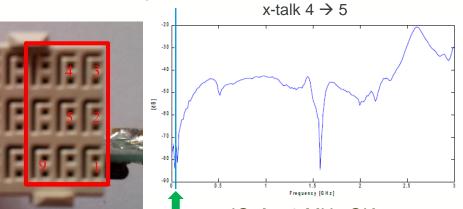
- 1. State of the art Zone3 Connection in MTCA.4
- 2. High-frequency diagnostic applications
- 3. Direct-sampling digitizer boards (FMC/AMC)
- 4. New Zone3 classification for MTCA.4

Digitizing of RF Signals in MTCA.4

- high-resolution digitizer (AMC)
- analog front-end (AFE) on RTM side
- down conversion of high frequency signals \rightarrow Zone3 differential
- Zone3 \rightarrow sampling on the AMC-board
- IF sampling at 50 MHz



struck innovative


Zone3 Differential Connector

- differential pair connections between AMC and RTM board
- digital and analog Zone3 classes
- J30 contains power, management, clock and digital data signals
- J31 contains analog differential inputs and outputs (AMC view)

DISADVANTAGE:

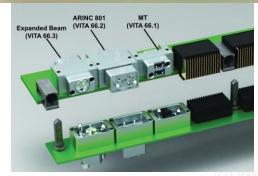
cross talk between differential pairs

non-IQ \rightarrow 50 MHz OK

AMC ZONE 3 CONNECTOR PIN ASSIGNMENT RECOMMENDATION

lass A1 / Zone		a	b	c	d	e	f
MTCA.4 management	J30	1 PWRA1	PWRB1	PS#	SDA	TCK	TDO
		2 PWRA2	PWRB2	MP	SCL	TDI	TMS
PGA / Standard Gbit-Link		3 D0+ / SFP-CLK+	D0- / SFP-CLK-	D1+ / SFP-RX+	D1- /SFP-RX-	D2+ / SFP-TX+	D2- / SFP-TX-
PGA User-configuration		4 D3+	D3-	D4+	D4-	D5+	D5-
		5 D6+	D6-	D7+	D7-	D8+	D8-
PGA / Digital fixed I/O		6 D9+ / AMC TCLK+	D9- / AMC TCLK-	D10+ / OUT0+	D10- / OUT0-	D11+ / OUT1+	D11-/ OUT1-
Shielding		7 gnd	gnd	gnd	gnd	gnd	gnd
Digital clock inputs		8 RTM_CLK4+	RTM_CLK4-	RTM_CLK2+	RTM_CLK2-	RTM_CLK5+	RTM_CLK5+
		9 RTM CLK0+	RTM CLK0-	RTM CLK3+	RTM CLK3-	RTM CLK1+	RTM CLK1-
Shielding		10 gnd	gnd	and	gnd	gnd	gnd
Analog signals	J31	1 CH9_PA+	CH9 PA-	DAC0+	DAC0-	CH9 TF+	CH9_TF-
		2 CH8 TF+	CH8 TF-	gnd	gnd	CH8 PA+	CH8 PA-
		3 CH7 PA+	CH7 PA-	DAC1+	DAC1-	CH7 TF+	CH7 TF-
		4 CH6_TF+	CH6_TF-	gnd	gnd	CH6_PA+	CH6_PA-
		5 CH5 PA+	CH5 PA-	DAC2+	DAC2-	CH5 TF+	CH5 TF-
		6 CH4 TF+	CH4 TF-	gnd	gnd	CH4 PA+	CH4 PA-
		7 CH3 PA+	CH3 PA-	DAC3+	DAC3-	CH3 TF+	CH3 TF-
		8 CH2_TF+	CH2_TF-	gnd	gnd	CH2_PA+	CH2_PA-
		9 CH1 PA+	CH1 PA-	DAC4+	DAC4-	CH1 TF+	CH1 TF-
		10 CH0 TF+	CH0 TF-	gnd	and	CH0 PA+	CH0 PA-

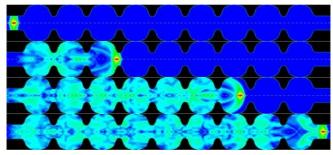
Table 1 : Pin assignment of Class A1, AMC side view


7th MicroTCA Workshop, Hamburg 2018

4

Solutions

© ElectronicDesign



ERNI © ERNI

J.Zink, 2018-12-06, Hamburg

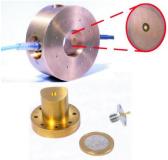
High Frequency Diagnostic Applications

bunch passing a cavity, H.Padamsee

Klystron melt-down after arc, TV transmitter

High-Order Modes

- electron bunch excites HOM in cavity, signals from HOM couplers can provide informations about:
- beam position, beam charge, cavity alignment
- "Electronics for High-Order Modes Detection", Uros Mavric et al.

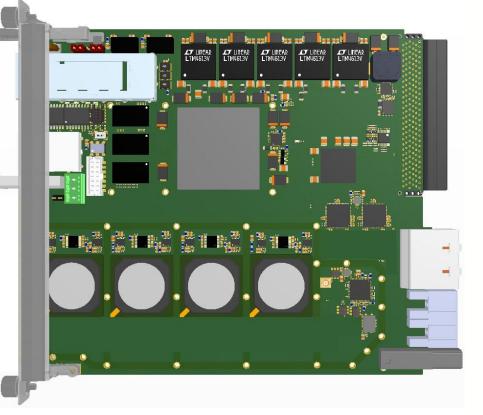

Klystron Lifetime Management

- detection of dangerous Klystron states:
- gun arcs, loss of beam, loss of RF signal
- Model Based Fast Protection System For High Power RF Tube Amplifiers Used At European XFEL Accelerator, Lukasz Butkowski

RF based Bunch Arrival Time Monitor

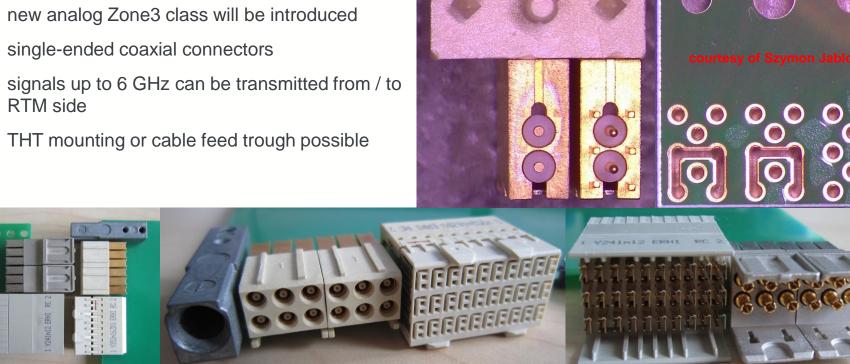
- direct sampling of pick-up signals
- reduction of bandwidth from 40 GHz to 2.4 GHz
- roughly estimate bunch arrival time
- adjust electro-optical BAM

DFMC-DS800


- to ANSI/VITA 57.1 standard
- 8.5 mm stacking height
- 12-Bit, 800 MSP/s Dual Ch., 1.6 GSP/s Single Ch.
- ADC input bandwidth: 2.7 GHz
- fully diff. amplifier LS bandwidth: 4.8 GHz

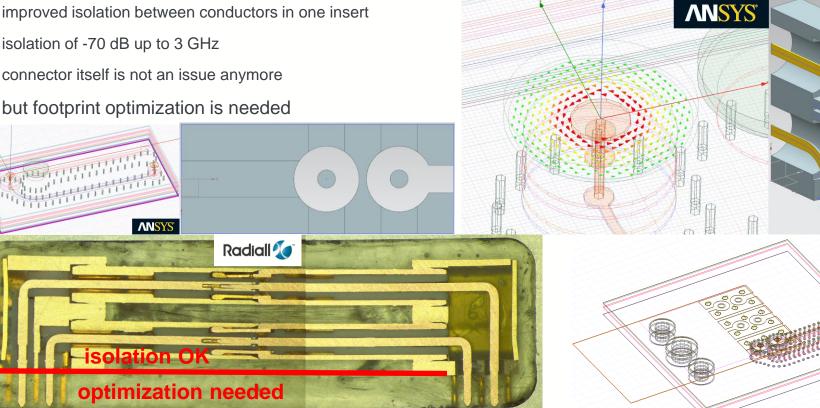
DAMC-DS800

- 4x 12-Bit, 800 MSP/s Dual Ch., 1.6 GSP/s Single Ch. ADCs
- ADC input bandwidth: 2.7 GHz
- fully diff. amplifier LS bandwidth: 4.8 GHz
- XCZU7EG F1517 ZynQ MPSoC Dual/Quad-Core ARM Cortex-A53
- Mali-400 Based GPU
- Signal feed in via Zone3 and Front Panel
- Quad SFP, COAX IO, HARLINK LVDS at FP
- First Batch Q3/2019



New Zone3 Class - Preliminary

J.Zink, 2018-12-06, Hamburg


- new analog Zone3 class will be introduced •
- single-ended coaxial connectors •
- signals up to 6 GHz can be transmitted from / to ٠ RTM side
- •

New Zone3 Class - Preliminary

- improved isolation between conductors in one insert •
- •
- connector itself is not an issue anymore •
- but footprint optimization is needed •

special thanks to Stanislav Chystiakov

Images used courtesy of ANSYS, Inc.

7th MicroTCA Workshop, Hamburg 2018

J.Zink, 2018-12-06, Hamburg

ANSYS[®]

DESY.

11

Zone 3 Connector Pin Assignment Recommendation for Analog Applications for AMC/ μ RTM Boards in the MTCA.4 standard

FEATURES

MTCA.4 management zone:

· Power, I²C, optional JTAG support

Analog signal transmission zone

12 channel DC-coupled single-ended IO (input) signals

Digital clock signal transmission zone:

- 2 AC-coupled differential inputs for low-jitter clock signals
- 1 LVDS output clock signal

User signal transmission zone:

- · 6 LVDS inputs / outputs for user-configuration
- 3 LVDS outputs with fixed output direction
- · Optional dual high-speed link

Zone shielding:

· Supports ground shielding between zones

APPLICATIONS

- AMC / µRTM board design in MTCA.4 standard
- · Multi-channel analog-to-digital converters
- Multi-channel signal shaper
- Multi-channel sensor readout and output
- Analog signal conditioning boards
- Low-jitter clock signal sampling and clock recovery

GENERAL DESCRIPTION

This Class A3.1 pin assignment definition of the Zone 3 connector in the MTCA.4 standard is a recommendation mainly for AMC and μ RTM boards transferring up to 12 analog signals over the Zone 3 connector. This analog class is designed for a three row ADF and two six pin coaxial Zone 3 connectors. The main goal is to classify the undefined Zone 3 pin assignment for applications to achieve a high compatibility between AMC and μ RTM boards.

This Class A3.1 pin assignment requires a common µRTM management implementation to make AMC and µRTM boards compatible. Appropriate management interface templates for this Class are available on http://mtca.desy.de.

AMC ZONE 3 CONNECTOR PIN ASSIGNMENT RECOMMENDATION

7th MicroTCA Workshop, Hamburg 2018

Table 1 : Pin assignment of Class A3.1, AMC side view

Class A3.1

- J30 like A1 and A2 classes
- J31 / J32 Up to 12 single-ended RF signals

OUTLOOK

- finishing simulation and research
- waiting for prototypes of improved CoaxiPack2
- finish Class A3.1 specification early next year

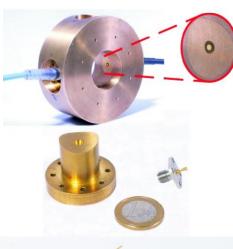
J.Zink, 2018-12-06, Hamburg

12

ACKNOWLEDGEMENTS

M. Fenner, S. Jablonski, F. Ludwig, U.Mavric

Thank you for your attention.



J.Zink, 2018-12-06, Hamburg

13

DESY.

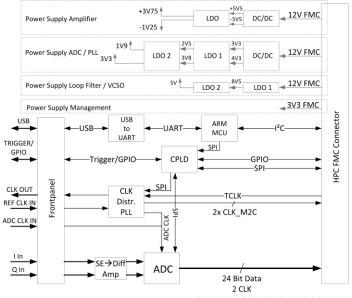
Diagnostic Applications

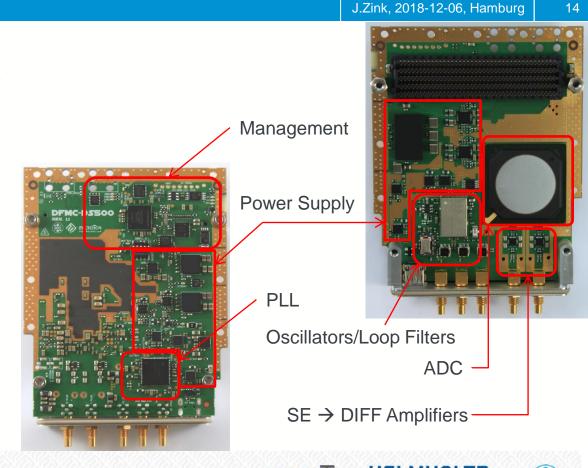
Bunch Arrival Time Monitor

- direct sampling of pick-up signals
- reduction of bandwidth from 40 GHz to 2.4 GHz
- roughly estimate bunch arrival time
- adjust electro-optical BAM

Photodiode / PSD

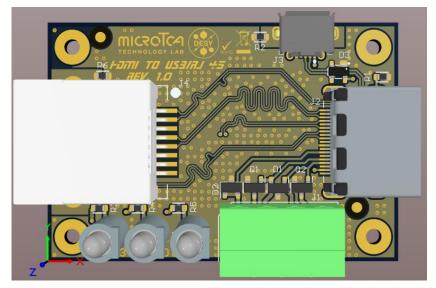
- fast photo diode and PSD readout
- beam position measurments
- light intensity measurements

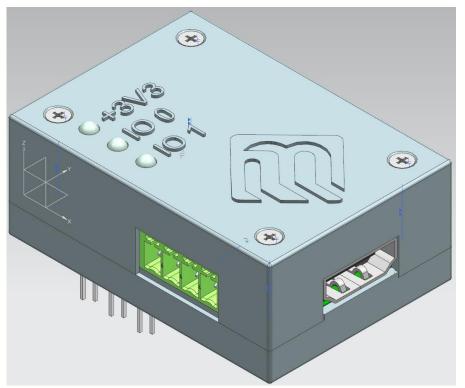

© HAMAMATSU


C HAMAMATSU

DFMC-DS800

- ADC input bandwidth: 2.7 GHz
- fully diff. amplifier LS bandwidth: 4.8 GHz
- no anti-aliasing filter present
- variants with up to 3.2 GSP/s

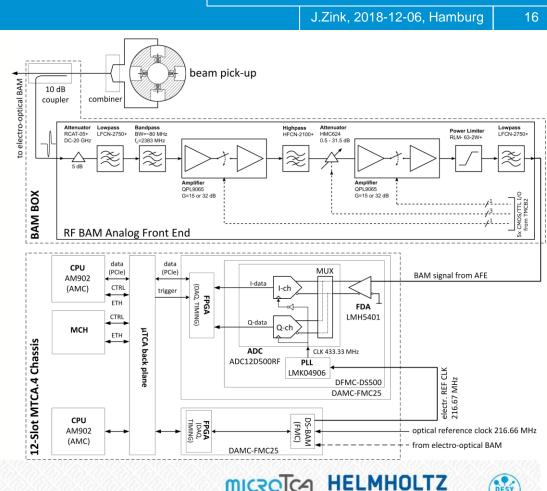




DESY.

Break-Out board

- 4 LVDS (differential) pairs → can act as input or output (trigger/control signals, 100 MHz)
- 2 single-ended bits input / ouput
- serial interface (debugging and testing)



Coarse BAM Channel

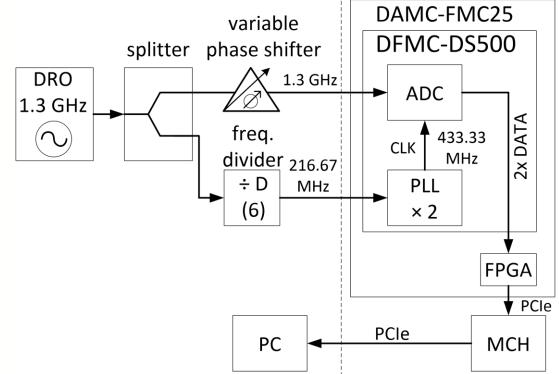
- coarse BAM Channel planned in FLASH
- coarse BAM channel in addition to electro-optical BAM [1,2] → automatically adjust optical delay lines
- uses same combined high-bandwidth pick up [3] signals (40 GHz)
- analog front end bandpass filters the pick up signal
- bunch charges can vary from 20 pC up to 1 nC, which requires a dynamic range of about 34 dB
- sampling (DFMC-DS500/DAMC-FMC25) and processing in MTCA.4 crate

CBAM Channel in FLASH

J.Zink, 2018-12-06, Hamburg

17

J.Zink, 2018-12-06, Hamburg


12-Slot MTCA Crate

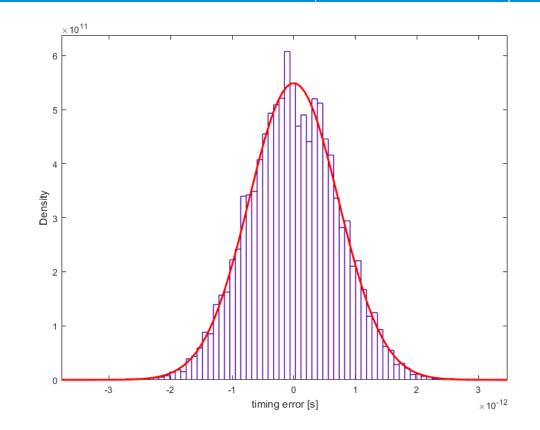
18

DESY.

CBAM DS500 Test Setup

 complex high-bandwidth pick up signal

- testing ADC performance under ideal conditions with reduced signal bandwidth
- undersampling 1.3 GHz carrier with phase synchronous ADC clock → produces DC signal
- timing error converts into amplitude error
- roughly estimate the timing accuracy


Results

J.Zink, 2018-12-06, Hamburg

19

- recorded 1.6M samples
- fitting normal distribution with:
 - μ = -2.93117e-21s σ = 726.36 fs
- timing error (p2p): 7 ps
- timing error (rms): 726 fs

- results are not outstanding but also not bad
- meet the requirements of ~1 ps

