

#### Upgrade of the LLRF system at ELBE

HZDR: Michael Kuntzsch, Reinhard Steinbrück, Klaus Zenker

DESY: Çağıl Gümüş, Martin Hierholzer, Sven Pfeiffer, Christian Schmidt



HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF

Member of the Helmholtz Association

Klaus Zenker | Institute of Radiation Physics | http://www.hzdr.de

#### **ELBE** – Center for high power radiation sources



0.2 ps

Micro pulse rate: 100 kHz - 26 MHz

#### Member of the Helmholtz Association Klaus Zenker | Institute of Radiation Physics | http://www.hzdr.de

bunch charge

minimal bunch length

#### Accelerator





# Why replacing the analogue with a digital LLRF?

Analogue LLRF:

- Components are partly not available anymore / will not be available in future
- The system can not cover 360° for phase shift

Digital LLRF:

- Improves diagnostics
- Improves phase and amplitude stability (at least long term)
- Allows implementation of a longitudinal beam based feedback system
- Based on MTCA and ChimeraTK





#### Components of the digital LLRF at ELBE

Hardware:



Rear Transition Module (RTM)



Advanced Mezzanine Card (AMC)

- Master oscillator: 1.3 GHz (REF), 260 MHz (REF), 78 MHz (CLK)
- UniLOGM: 8×LO (1.3 GHz+54<sup>1</sup>/<sub>6</sub> MHz), 8×CLK (65 MHz), 8×REF (1.3 GHz))

Software:

- Firmware for struck boards ⇒ LLRF controller (adopted for cw operation in collaboration with DESY)
- Control software for the LLRF ⇒ ChimeraTK (together with DESY)
- Adapter for ChimeraTK that is compatible with WinCC ⇒ OPC-UA Adapter (TU Dresden, now IOSB Karlsruhe)

#### Integration into ELBE infrastructure





#### **Contributions to ChimeraTK**

- 1 DeviceAccess-Modbus
  - SSPA control
- 2 DeviceAccess-1wire
  - Temperature and humidity control (LLRF long term drift correlation)
- 3 Watchdog
  - System monitoring including LLRF Server Application control
- 4 Server based history
- 5 ROOT based long term DAQ buffer
- $\Rightarrow$  see also talk by Martin Killenberg

#### ChimeraTK benefits

All these developments are applicable at other facilities (TARLA, MESA,  $\dots$ ) out of the box independent of their control system!

#### HZDR

#### Watchdog







#### Performance of the LLRF server host

System parameter:

- $2 \times 14$  cores (56 threads)
- 64 GB RAM (ECC)
- Fujitsu Server tools (mail alert, iRMC)





# [NPCIEx8-OptQSFP-UPLINK manual]

#### Performance of the LLRF server host

System parameter:

- $2 \times 14$  cores (56 threads)
- 64 GB RAM (ECC)
- Fujitsu Server tools (mail alert, iRMC)
- NPCIEx8-Opt-QSFP-UPLINK (8 lanes, PCIe Gen 3)





#### LLRF controller design

Characteristics of the MIMO controller:

- Infinite impulse response filter of 2nd order
- $\Rightarrow$  10 parameters per cavity/buncher to be fixed
  - Used to:
    - Decouple I and Q
    - Avoid passband mode excitations (7/9 $\pi$  mode and 8/9 $\pi$  mode)



#### LLRF controller design

Characteristics of the MIMO controller:

- Infinite impulse response filter of 2nd order
- $\Rightarrow$  10 parameters per cavity/buncher to be fixed
  - Used to:
    - Decouple I and Q
    - Avoid passband mode excitations (7/9 $\pi$  mode and 8/9 $\pi$  mode)

Procedure:

- System identification using system excitations optimized to study the system characteristics (e.g. identify pass band modes)
- Model building based on the system characteristics
- Deriving of the MIMO controller parameters from the model



#### LLRF controller design

Characteristics of the MIMO controller:

- Infinite impulse response filter of 2nd order
- $\Rightarrow$  10 parameters per cavity/buncher to be fixed
  - Used to:
    - Decouple I and Q
    - Avoid passband mode excitations (7/9 $\pi$  mode and 8/9 $\pi$  mode)

Procedure:

- System identification using system excitations optimized to study the system characteristics (e.g. identify pass band modes)
- Model building based on the system characteristics
- Deriving of the MIMO controller parameters from the model

Performance:

- Out-of-loop noise measurement (Signal Source Analyser)
- Jitter (10 Hz–10 MHz): 26 fs (digital LLRF), 36 fs (analogue LLRF)

### Summary

- $\checkmark\,$  Parallel operation of analogue and digital LLRF
- ✓ Integration into machine protection system
- ✓ Integration into HMI (WinCC)
- ✓ Controller design for all supercunducting RF cavities and the normal conducting buncher cavities
- Short development cycles thanks to our collaborators at DESY (LLRF Server+Firmware) and TUD/IOSB (OPC-UA)
- Goal: User operation end of 2018



# Outlook



Beam based feedback:

- Diagnostic crate design and firmware (DMCS Łódź)
- ChimeraTK diagnostics application (HZDR)
- Feedback controller (HZDR)

