Transfer matrix for high-x MC and Comparison of various PDFs at high-x

Ritu Aggarwal, Allen Caldwell

New in today's talk

New Since last talk:

All new suggested PDFs and their latest versions included.

Plots with comparison of generated events via different PDFs updated

P-values and other numbers updated

Motivation of studying published high-x data

Note the uncertainity bands above $x \sim 0.65$, can high-x data impact here

Current Analysis: Extension of ZEUS high-x paper

Data & MC samples (same as high-x paper)

04-06 e-p data (185 pb -1) & 06/07 e+p data (141.44 pb⁻¹) DJANGOH 1.6, Ariadne 4.12, CTEQ-5D MCs

Using a combination of Ariadne and MEPS MC to get best representation of data. (same as high-x paper)

Selection Cuts:

Please refer backup for details (same as in high-x paper)

Other Inputs to MC:

(termed as simulation weights in further presentation : w_{MC}^{SM})

- Calibrations
- >Track Matching Efficiency
- >Track Veto inefficiency
- >Zvtx Reweighting

(same as in high-x paper)

Tracing back the path of MC reconstructed events in the generated x-Q² phase space

Plots for Preliminary

Reconstructed MC events in xsection binning 'N' (total 153 bins, i bins)

Generated distribution of these events in extended binning 'M' (total 429 bins, k bins)

Transfer Matrix:

Probability of an event reconstructed in jth bin : $v_{j,k}$ to come from ith true bin : $v_{i,k}$

$$u_{j,k} pprox \mathcal{L} \sum_i t_{ij} \sigma_{i,k}$$

L : data luminosity & σ_{ik} : born level cross sections in k^{th} bin

Where
$$t_{ij} = K_{ii} a_{ij}$$

Here, K_{ii} = radiative corrections on the Born level Cross-sections

Each element in Transfer Matrix is represented as

$$a_{ij} = \frac{\sum_{k=1}^{M_i} \omega_k I(k \in j)}{\sum_{k=1}^{M_i} \omega_k}$$

 a_{ij} = probability of an event reconstructed in j^{th} bin to come from i^{th} bin

 ω_k = weight given to k^{th} event in bin i (contains 2 type of weights : simulation weights and Q^2 weights due to different Q^2 subsamples)

I = 1 if k^{th} event is reconstructed in bin j, else = 0

 M_i = total events generated in ith bin

a_{ij} has all detector and analysis effects

Also

 K_{ii} = Integrated Xsec in (x,Q2) bin with radiative corrections Integrated Xsec in (x,Q2) bin

Transfer Matrix (T)

Transfer matrix

Using Transfer matrix to predict no. of events reconstructed in a given cross section bin

Using Transfer matrix to predict no. of events reconstructed in a given cross section bin

Predicted x-Q2 events in Cross section binning (for different PDFs)

Generated x-Q2 events in Extended binning (for different PDFs)

Where for each (x,Q2), true bin

$$\nu_{i,k} = \sum_{m}^{M_i} \frac{d^2 \sigma(x, Q^2 | M_k) / dx dQ^2}{d^2 \sigma(x, Q^2 | M_0) / dx dQ^2} \omega_m^{MC}$$

HERAPDF2.0NLO for M bins (e+p)
ZEUS Preliminary

Plots for Preliminary

There is a shape difference between HERAPDF & other PDFs, approaches 10% at $x \sim 0.4$, well outside PDF uncertainties.

HERAPDF2.0NLO for M bins (e-p)
ZEUS Preliminary

Plots for Preliminary

There is a shape difference between HERAPDF & other PDFs, approaches 10% at $x \sim 0.4$, well outside PDF uncertainties.

Plots for Preliminary

HERAPDF2.0NNLO for M bins (e-p)
ZEUS Preliminary

Plots for Preliminary

Average ratio of Born level cross sections in ABM PDFs to HERAPDF2.0 for M bins (e+p)

Average ratio of Born level cross sections in NNPDF to HERAPDF2.0 for M bins (e+p)

Ratio of No. of events in data to HERAPDF2.0 NLO and 1,2,3 sigma bands from Poisson Statistics

 \mathbf{X}

Ratio of No. of events in data to HERAPDF2.0 NLO and 1,2,3 sigma bands from Poisson Statistics

ZEUS e-p data Plots for Preliminary **ZEUS Preliminary** Q²=875 GeV² 1.4 Q²=725 GeV² Q²=1025 GeV² DATA/HERAPDF2.0 NLO 1.2 8.0 0.6 1.4 $Q^2 = 1200 \text{ GeV}^2$ $Q^2 = 1400 \text{ GeV}^2$ $Q^2 = 1650 \text{ GeV}^2$ 8.0 0.6 $Q^2 = 1950 \text{ GeV}^2$ $Q^2 = 2250 \text{ GeV}^2$ $Q^2 = 2600 \text{ GeV}^2$ 1.5 0.5 3 $Q^2 = 4150 \text{ GeV}^2$ $Q^2 = 3000 \text{ GeV}^2$ $Q^2 = 3500 \text{ GeV}^2$ 0.2 0.4 0.6 8.0 $Q^2=5250 \text{ GeV}^2$ $Q^2 = 7000 \text{ GeV}^2$ ZEUS e p 185 pb⁻¹ $N_{obs} = 0$ in DATA 68% $Q^2 = 9500 \text{ GeV}^2$ $Q^2 = 15500 \text{ GeV}^2$ 95% 99.9% **PDF** uncertainty

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

8.0

 \mathbf{X}

17

Probability for explaining data from different PDFs

Total probability for each PDF : $P(D|M_k) = \prod_j \frac{e^{-\nu_{j,k}} \nu_{j,k}^{n_j}}{n_j!}$ n_j = events in data in jth bin k : kth PDF index

Calculating the **relative Probablity wrt. HERAPDF**

Preliminary Request : only p-values from the table

		e^-p		e^+p				
PDF	$\ln P$	p-value	$\Delta \chi^2$	$\ln P$	p-value	$\Delta \chi^2$		
CT14	-588.4	1.6e - 03	19.8	-526	7.8e - 01	-19.2		
HERAPDF2.0	-578.5	5.5e - 02	0	-535.6	4.6e - 01	0		
MMHT2014	-588.2	1.9e - 03	19.4	-525.9	7.9e - 01	-19.4		
NNPDF2.3	-598.3	6.9e - 05	39.6	-528.7	6.5e - 01	-13.8		
NNPDF3.0	-595.4	2.5e - 04	33.8	-527.7	7.0e - 01	-15.8		
ABMP16	-582.2	1.5e - 02	7.4	-526.8	7.8e - 01	-17.6		
abm11	-593	1.0e - 03	29	-532.2	5.7e - 01	-6.8		

Table 1. The results from comparisons of predictions (at NLO) using different PDF sets to the observed numbers of events. The log of the probability, the corresponding p-value, and the effective χ^2 difference relative to the HERAPDF2.0 result are given. The results are shown separately for the e⁻p and e^+ p data sets. The results are for the full Bjorken-x range

Eq. of P-value determination

FIGURE 4. Distribution of expected values for $\ln P(D|M=CTEQ)$ for the e⁺p data set. The arrow shows the value found in the data

P-value is calculated by integrating out the probability from the left edge till red for the given **PDF**

Equivalent Delta chi2 determination

$$\Delta \chi_{k,l}^2 = -2 \ln \frac{P(D|M_k)}{P(D|M_l)} = -2 \left(\sum_j \nu_{j,l} - \nu_{j,k} + n_j \cdot \ln \frac{\nu_{j,k}}{\nu_{j,l}} \right)$$

Comparing Total Probability for different Pdfs in different x range

Preliminary Request : only p-values from the table as below

		e ⁻	_b		e^+p				
	x < 0.6		$x \ge 0.6$		x < 0.6		$x \ge 0.6$		
PDF	$\ln P$	p-value	$\ln P$	p-value	$\ln P$	p-value	$\ln P$	p-value	
CT14	-530.3	8.2e - 04	-62.02	1.9e - 01	-471.3	7.4e - 01	-55.22	5.8e - 01	
HERAPDF2.0	-517.9	5.9e - 02	-61.37	2.3e - 01	-477.2	5.9e - 01	-60.16	1.1e - 01	
MMHT2014	-538.1	3.0e - 05	-62.81	1.2e - 01	-472.9	6.5e - 01	-54.86	6.0e - 01	
NNPDF2.3	-536.3	6.6e - 05	-61.92	1.8e - 01	-473.2	6.4e - 01	-55.28	5.6e - 01	
NNPDF3.0	-536.3	2.6e - 05	-61.8	1.9e - 01	-472.9	6.5e - 01	-55.32	5.6e - 01	
ABMP16	-522	1.3e - 02	-61.6	2.1e - 01	-471.1	7.6e - 01	-55.56	5.4e - 01	
abm11	-519	3.1e - 02	-60.89	2.8e-0 1	-473.9	6.8e-01	-56.69	4.0e - 01	

Table 2. The results from comparisons of predictions using different PDF sets (at NLO) to the observed numbers of events. The log of the probability is given for two different x ranges for the e^+p and e^-p data sets.

Statistical and systematic uncertainties

Type of Systematic Uncertainties:

- 1) Affecting the predictions at generator level (M values)
- 2) Affecting the Transfer Matrix T

Type I:

1) Luminosity uncertainty scaling M values

Type II:

- 1) MC statitical fluctuations (uncorrelated uncertainty)
- 2) All correlated and uncorrelated systematic uncertainties as in high-x paper
- 3) Choice of PDF for building T

Have been studied in detail, but we don't want the numbers/plots from these (coming in the following slides) as preliminary

Nomalization Error: Vary M by 1.8 % up and down and calculate In P.

+1.8 %									
		e-	_b		e^+p				
	$x \cdot$	< 0.6	$x \ge$	≥ 0.6	x	< 0.6	$x \ge 0.6$		
PDF	$\ln P$	p-value	$\ln P$	p-value	$\ln P$	p-value	$\ln P$	p-value	
CT14	-520.2	2.4e - 02	-60.95	2.9e - 01	-470.8	8.1e - 01	-56.36	4.6e - 01	
HERAPDF2.0	-523.8	1.9e - 02	-62.72	1.4e - 01	-488.2	1.8e - 01	-63.15	2.7e - 02	
MMHT2014	-524.3	7.6e - 03	-61.36	2.3e - 01	-470	8.2e - 01	-55.72	5.1e - 01	
NNPDF2.3	-523.2	9.5e - 03	-60.92	2.8e - 01	-470.4	8.1e - 01	-56.47	4.3e - 01	
NNPDF3.0	-523.4	7.8e - 03	-60.83	3.0e - 01	-470.4	8.1e - 01	-56.55	4.3e - 01	
ABMP16	-518.3	4.0e - 02	-60.83	3.0e - 01	-475.7	6.1e - 01	-56.94	3.8e - 01	
abm11	-520.4	3.0e - 02	-60.82	3.1e - 01	-481.5	3.6e - 01	-58.58	2.2e - 01	
			_	-1.8 %					
		e ⁻	p			e^{\dashv}	p		
	$x \cdot$	< 0.6	$x \ge 0.6$		x < 0.6		$x \ge 0.6$		
PDF	$\ln P$	p-value	$\ln P$	p-value	$\ln P$	p-value	$\ln P$	p-value	
CT14	-548	0.0e + 00	-63.89	7.8e - 02	-477.4	3.9e - 01	-54.68	6.3e - 01	
HERAPDF2.0	-520	2.8e - 02	-60.85	2.6e - 01	-472	7.7e - 01	-57.8	2.5e - 01	
MMHT2014	-559.5	0.0e + 00	-65.04	3.7e - 02	-481.2	2.2e - 01	-54.59	6.1e - 01	
NNPDF2.3	-556.8	0.0e + 00	-63.72	7.8e - 02	-481.5	2.2e - 01	-54.7	6.1e - 01	
NNPDF3.0	-556.9	0.0e + 00	-63.57	8.4e - 02	-480.9	2.3e - 01	-54.71	6.2e - 01	
ABMP16	-533.4	2.6e - 04	-63.18	1.0e - 01	-472.1	6.7e - 01	-54.78	6.1e - 01	
abm11	-525.5	3.9e - 03	-61.77	1.9e - 01	-471.9	7.1e - 01	-55.41	5.4e - 01	

Table 5. The results from comparisons of predictions using different PDF sets increased by 1.8 % (top) and decreased by 1.8 % (bottom) to the observed numbers of events. The log of the probability is given for two different x ranges for the e^-p and e^+p data sets.

Statistical Error: Error in element aij of the Transfer Matrix

For most of the bins with in 1%, increases to 6-10% in the highest x-bins at high Q2.

Ariadne-MEPS variation: The ARI-MEPS combination is varied in construction of Transfer Matrix.

For most of the bins with in 1%, increases to 2-10% in the highest x-bins at high Q2.

Other Systematic Variation : Ee varied up and down and new Transfer Matrix constructed .

For most of the bins with in 1%, increases to 2-12% in the highest x-bins at high Q2.

Other Systematic Variation : Ejet varied up and down and new Transfer Matrix constructed .

Major Systematic Errors: New a_ij according to systematic variation up and down.

	e^+p		e ⁻ p		
Systematic	$\ln P$	<i>p</i> -value	$\ln P$	<i>p</i> -value	
	up: down	up:down	up : down	up : down	
Electron energy scale	-533.4:-531.6	0.62:0.60	-576.7:-579.3	0.09:0.03	
Electron energy resolution	-530.5:-532.7	0.68:0.65	-578.6:-576.3	0.05:0.09	
Electron isolation cut	-532.7:-528.9	0.61:0.74	-576.5:-580.7	0.08:0.02	
Hadronic energy scale	-531.4:-531.2	0.66:0.67	-577.3:-576.8	0.068:0.072	
FCAL alignment	-530.8:-531.5	0.69:0.66	-576.7:-576.9	0.085:0.075	
F-BCal Crack cut	-531.1:-531.2	0.68:0.69	-575.2:-578.5	0.052:0.108	
MEPS/Ariadne reweighting	-530.8:-532.0	0.69:0.64	-576.0:-578.7	0.083:0.059	

Table 5. The log of the probability and the p-value for various systematic checks performed for the e^+p and e^-p data sets.

Nomial value for comparisor		e^+p			e ⁻ p	
PDF	$\ln P$	p-value	$\Delta \chi^2$	$\ln P$	p-value	$\Delta \chi^2$
CTEQ5D	-531.2	0.68	0	-577.0	0.079	0

Systematic Errors: Considering various vectors for HERAPDF2.0

	e ⁻	-p	e^+p		
Eigen Vector	$\ln P$	p-value	$\ln P$	<i>p</i> -value	
0	-580.2	0.04	-538.9	0.34	
1	-580.2	0.03	-539.2	0.32	
2	-580.2	0.03	-538.6	0.35	
3	-580.0	0.04	-538.0	0.37	
4	-580.4	0.03	-539.8	0.30	
5	-579.8	0.04	-538.0	0.37	
6	-580.7	0.03	-539.9	0.30	
7	-580.3	0.03	-538.5	0.34	
8	-580.2	0.04	-539.4	0.32	
9	-580.8	0.03	-540.7	0.28	
10	-579.7	0.04	-537.3	0.37	
11	-580.6	0.03	-540.0	0.30	
12	-579.9	0.03	-537.9	0.36	
13	-580.5	0.03	-539.6	0.31	
14	-580.0	0.03	-538.3	0.34	
15	-580.0	0.04	-538.4	0.36	
16	-580.4	0.04	-539.4	0.32	
17	-580.0	0.04	-538.7	0.34	
18	-580.4	0.03	-539.3	0.31	
19	-579.9	0.04	-538.0	0.36	
20	-580.5	0.03	-539.8	0.31	
21	-580.8	0.04	-540.5	0.28	
22	-579.9	0.04	-537.9	0.36	
23	-580.2	0.03	-538.6	0.34	
24	-580.5	0.03	-539.9	0.29	
25	-579.7	0.04	-538.3	0.35	
26	-580.4	0.03	-538.8	0.33	
27	-579.7	0.03	-536.8	0.39	
28	-580.6	0.03	-540.0	0.30	

Variance Vector	$\ln P$	p-value	$\ln P$	p-value
1	-580.1	0.03	-538.8	0.33
2	-580.3	0.03	-539.0	0.33
3	-580.1	0.04	-538.8	0.34
4	-580.2	0.04	-539.0	0.33
5	-580.3	0.04	-539.5	0.32
6	-579.9	0.04	-538.0	0.36
7	-580.2	0.03	-539.0	0.32
8	-580.2	0.04	-538.9	0.34
9	-580.1	0.04	-538.8	0.35
10	-580.3	0.03	-539.1	0.31
11	-580.2	0.04	-538.9	0.34
12	-580.2	0.03	-539.1	0.32
13	-579.4	0.04	-537.3	0.38
TD 1. C	11 1:0	0.04		TED A DD

TABLE 3. The results from the different variants in HERAPDF2.0 NLo. The log of the probability and respective p-values are given for the e^-p and e^+p data sets. The M values for different variants are calculated at the bin-average and not using Equation given in slide 8

Results

- 1) Technique of building Transfer Matrix Shown.
- 2) Transfer Matrix can be used to predict number of events in the given cross section bins in MC.
- 3) Transfer Matrix can be used to compare number of events reconstructed by different PDFs.
- 4) A comparison of different PDFs can be done on the basis of best explanation to the high-x data using Transfer Matrix.
- 5)Statistical, normalization and systemtic errors in a_ij checked Normalization uncertainty is the dominant one.

Back Up (some Old slides)

Average ratio of Born level cross sections in ABM PDFs to HERAPDF2.0 for M bins (e-p)

Prescription of model fitting to high-x data

Probability of observing Data with given set of PDF parameters θ and nuisance parameters λ :

$$P(D|\theta,\lambda) = \prod P(n_j|\nu_j(\theta,\lambda))$$

Predicted number of events v_i is given as :

$$\nu_j = \sum_{i} \nu_i (1 + 0.018 \cdot \lambda_0) a_{ij} (1 + \sum_{k=1} \lambda_k \delta_{ij}^k)$$

 δ 's : one standard deviation due to k correlated systematic sourses

λo: modification in normalization in units of standard deviatiom

λk : shifts in the systematic errors

Where a penalty is added to the loglikelihood function: $\mathcal{L}(\theta, \lambda) = P(n_j | \nu_j(\theta, \lambda)) P(\lambda)$

where the $P(\lambda)$ is a product of Gauss distributions:

$$P(\lambda) = \prod_{k=0} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}\lambda_k^2}$$

Uncorrelated uncertainties can be taken into account by folding a Gauss distribution for them with the Poisson distribution:

$$P(n_j|\nu_j) = \int \frac{e^{-\nu_j(1+\epsilon_j)}(\nu_j(1+\epsilon_j))^{n_j}}{n_j!} \frac{1}{\sqrt{2\pi}\delta_j} e^{-\frac{1}{2}(\frac{\epsilon_j}{\delta_j})^2} d\epsilon_j$$

Other Uncorr Systematic Variation : Eres varied up and down and new Transfer Matrix constructed.

For most of the bins with in 1%, increases to 2-3% in the bins at high Q2.

Other Uncorr Systematic Variation : Econe varied up and down and new Transfer Matrix constructed.

For most of the bins with in 1%, increases to 2-5% in the bins at high Q2.

Data & MC sample:

04-06 e-p data (185 pb -1) & 06/07 e+p data (141.44 pb⁻¹)
DJANGOH 1.6, Ariadne 4.12, CTEQ-5D MCs (Standard Orange)

Selection:

Vertex:

Valid vertex && |Zvtx| < 50. cm

Electron:

EM finder

e- candidate with Ee>15GeV

EmProb >0.001 (θ_{a} >0.3) else EmProb > 0.01

Econe (w/o e+) < 4.0 GeV

QEDC rejection

Fiducial volume cuts:

BCAL+FCAL e-s

no cracks, no RCAL

|DME| > 1.4 cm && | DCE| > 0.6 cm

In CTD Acceptance

DCA < 10 cm

Superlayers > 4

TrkP > 5. GeV

Not in Acc. Of CTD

Pt elec > 30. GeV

Trigger selection:

DST 14

Kinematics:

40<Empz<65
Pt/SqrtEt < 5 GeV
y el < 0.80

Jets

1,2,3(<4) jet events Box cut (40.40 cm²) Et (all jets) > 10 GeV

O jet events (including events rejected in box cut & Et cut) to be assigned to highest x-bin.

extended binning Bin number (total 429 bins)

extended binning generated events (sum of weights)

Ni recon data (El-pt jet method)

Why do we study in Probability numbers

What types of probabilities do we expect?

E.g., imagine you expect 1 event, and measure 1, then the probability is

$$P(n|\nu) = e^{-\nu} \frac{\nu^n}{n!} = e^{-1} \approx 0.37$$

E.g., imagine you expect 10 events, and measure 8, then the probability is

$$P(n|\nu) = e^{-\nu} \frac{\nu^n}{n!} = e^{-10} \frac{10^8}{8!} \approx 0.11$$

E.g., imagine you expect 100 events, and measure 90, then the probability is

$$P(n|\nu) = e^{-\nu} \frac{\nu^n}{n!} = e^{-100} \frac{100^{90}}{90!} \approx 0.02$$

If we have 150 bins with probabilities ranging from a few % to few 10 %, then

$$P({n}|{\nu}) = \prod_{i=1}^{150} e^{-\nu_i} \frac{\nu_i^{n_i}}{n_i!} \text{ maybe } 10^{-200} \text{ ln } P \approx -500$$

Why do we study in Probability numbers

If the likelihood (product of the data probabilities) is a product of Gaussian distributions, then we have

$$\mathcal{L} \propto e^{-\chi^2/2}$$
 and $\ln \mathcal{L}_1 - \ln \mathcal{L}_2 = \frac{1}{2}(\chi_2^2 - \chi_1^2)$

So we can translate differences in the In of the probabilities (multiplied by -2) to equivalent chi squared differences

If we look at ratios of probabilities, and again assuming Gaussian distributions, then

$$\frac{P_1}{P_2} = e^{-(\chi_1^2 - \chi_2^2)/2}$$

so taking -2* the natural logarithm of a probability ratio is again equivalent to a chi squared difference

FIGURE 4. Distribution of expected values for $\ln P(D|M=CTEQ)$ for the e⁺p data set. The arrow shows the value found in the data.

Prob[0]: Central value

13th (last) member in the Vector Corresponds to u-valence parameter

Variation in the PDFs within HERAPDF2.0 much smaller than the inter PDF variation. Big change comes from #13 which has different normalization!

28 Eigen Vector members

Reduced Xsec_EigVector_i/Reduced Xsec_EigVector_0

Check 1: Comparing N (calculated from Transfer Matrix) for different Pdfs For high-x bins only (~20 bins) e+p

Q	2bin	x bin	N_	data d	CTEQ5D CT	10nlo HER	APDF1.5 HI	ERAPDF2.0) MMHT201	4 NNPDF2.3
650 -	800,0	0.26 -	1.00,	371,	405.72,	394.06,	410.30,	423.25,	389.24,	393.99
800 -	950,	0.28 -	1.00,	482,	489.51,	474.57,	495.66,	511.02,	468.23,	474.34
950 -	1100,	0.32 -	1.00,	281,	306.00,	295.75,	309.94,	319.02,	291.59,	295.59
1100 -	1300,	0.34	- 1.00,	275,	263.15,	253.57	, 266.32,	273.48,	249.89	253.43
1300 -	1500,	0.36	- 1.00,	146,	159.65,	153.43	, 161.38,	165.35,	151.13	153.32
1500 -	1800,	0.39	- 1.00,	115,	137.63,	131.77	, 138.76,	141.57,	129.71	, 131.65
1800 -	2100,	0.43	- 1.00,	62,	71.67,	68.33,	71.88,	72.89,	67.21,	68.25
2100 -	2400,	0.46	- 1.00,	31,	40.99,	38.95,	40.84,	41.15,	38.27,	38.89
2400 -	2800,	0.50	- 1.00,	27,	29.22,	27.68,	28.83,	28.79,	27.16,	27.62
2800 -	3200,	0.54	- 1.00,	13,	15.03,	14.20,	14.62,	14.43,	13.90,	14.15
3200 -	3800,	0.58	- 1.00,	11,	11.01,	10.41,	10.53,	10.26,	10.15,	10.35
3800 -	4500,	0.63	- 1.00,	6,	4.82,	4.57,	4.47,	4.26,	4.43,	4.53
4500 -	6000,	0.69	- 1.00,	3,	3.03,	2.92,	2.67,	2.47,	2.79,	2.86
6000 -	8000,	0.59	- 0.73,	1,	4.44,	4.16,	4.18,	3.98,	4.03,	4.11
6000 -	8000,	0.73	- 1.00,	0,	0.98,	0.96,	0.83,	0.75,	0.90,	0.93
8000 -	11000	, 0.57	- 0.64	, 2,	2.29,	2.13,	2.21,	2.13,	2.07,	2.11
8000 -	11000	, 0.64	- 0.78	, 0,	1.82,	1.72,	1.63,	1.49,	1.64,	1.68
8000 -	11000	, 0.78	- 1.00	, 0,	0.34,	0.35,	0.27,	0.23,	0.32,	0.33
11000 -	20000), 0.60	- 1.00	, 3,	2.99,	2.82,	2.80,	2.60,	2.70,	2.75

Check 1 : Comparing N (calculated from Transfer Matrix) for different Pdfs For high-x bins only (~20 bins) e-p

Q2bin x bin N_data CTEQ5D CT10nlo HERAPDF1.5 HERAPDF2.0 MMHT2014 NNPDF2.3

```
650 -
       800, 0.26 - 1.00, 504, 532.79, 517.39, 537.46, 555.91, 511.00, 517.30
       950, 0.28 - 1.00, 671, 635.27, 615.70, 642.07, 663.36, 607.38, 615.41
- 008
       1100, 0.32 - 1.00, 414, 407.28, 393.53, 412.05, 424.52, 388.02, 393.37
950 -
        1300, 0.34 - 1.00, 368, 348.28, 335.45, 352.39, 361.86, 330.60, 335.31
1100 -
        1500, 0.36 - 1.00, 202, 210.08, 201.77, 212.44, 217.51, 198.75, 201.66
1300 -
        1800, 0.39 - 1.00, 173, 181.26, 173.43, 182.95, 186.35, 170.75, 173.33
1500 -
        2100, 0.43 - 1.00, 74, 95.75, 91.18,
1800 -
                                              96.29. 97.25. 89.70. 91.12
2100 -
        2400, 0.46 - 1.00, 51, 53.00, 50.29,
                                              53.01, 53.10, 49.43, 50.25
        2800, 0.50 - 1.00, 36,
                                                             34.90, 35.52
2400 -
                               37.61, 35.57,
                                              37.30, 36.94,
        3200, 0.54 - 1.00, 19,
                               20.34, 19.21,
                                                      19.49,
                                                             18.80, 19.16
2800 -
                                              19.95,
3200 -
        3800, 0.58 - 1.00, 17,
                               14.32. 13.52.
                                              13.81. 13.28.
                                                             13.18. 13.47
                                                             5.80, 5.95
        4500, 0.63 - 1.00, 5,
                             6.32, 6.00,
3800 -
                                              5.93, 5.55,
        6000, 0.69 - 1.00, 3,
                               4.34, 4.18,
                                              3.88, 3.50,
4500 -
                                                             3.98,
                                                                   4.11
        8000, 0.59 - 0.73,
                                                             5.32,
                                                                   5.46
6000 -
                          10,
                                5.88, 5.49,
                                              5.53, 5.22,
        8000, 0.73 - 1.00,
                          1,
6000 -
                               1.47,
                                      1.43,
                                              1.26,
                                                      1.11,
                                                            1.34,
                                                                   1.39
                          4,
- 0008
       11000, 0.57 - 0.64,
                                              3.86,
                                4.05, 3.75,
                                                      3.73.
                                                            3.64.
                                                                   3.73
       11000, 0.64 - 0.78,
                                2.46, 2.32,
8000 -
                                                                   2.28
                           1,
                                              2.21,
                                                      2.02,
                                                            2.21,
                                0.32,
                                      0.34,
                                              0.24,
8000 -
       11000, 0.78 - 1.00,
                                                     0.19,
                                                            0.30,
                                                                   0.31
        20000, 0.60 - 1.00, 8,
11000 -
                                5.28,
                                      4.94,
                                              4.82,
                                                      4.58,
                                                            4.75,
                                                                   4.90
```