Track Fitting in phase2 (prod2)

Stefano Spataro

Track Fitting

Track Fitting - 2

Pattern Recognition algorithms provide the prefit values

Seed @ the first detector plane

Kalman Filter refit tracks and provides the updated parameters

Helix or Cartesian coordinates @ the perigee (point of closest approach to Z axis?)

Deterministic Annealing Filter (DAF) removes hits far from the main trajectory (outliers)

Data and Condidions

Experiment 3

Runs from 112 to 1162

Prod 1 (prod 2 has almost no SVD/PXD hits)

Release 01-02-02

use_central_database("GT_gen_data_004.43_gcr2b-reprocessing", LogLevel.WARNING)

input_root_files = ['/hsm/belle2/bdata/Data/release-01-02-02/DBxxxxxxxx/prod00000001/e0003/4S/r0*/all/dst/sub00/dst.beam.*.root']

Seed position - XY

Good CDC Tomography

Seed position - RZ

sqrt(seed_x*seed_y*seed_y):seed_z

Hits outside CDC acceptance

Seed position Zoom

Seed position – R

sqrt(seed_x*seed_x+seed_y*seed_y)

Why a distribution so "flat"?

I would expect to have a lot of events with first hit close to 0, and decreasing in a more or less exponential way

10

20

Fitted tracks: CDC first vs last layer

50

Track(π) First CDC Layer

- Why, if the track starts from a VXD hit, the first CDC hit is so far from the inner layer?
- This effect is not correlated to angles

Fitted tracks: VXD first vs last layer

SVD hits are fine PXD has mostly tracks where only layer 1 is correlated What happened to PXD layer 2?

Perigee coordinates from track fit

trk_y_pi:trk_x_pi {flag_pi}

Position from Track Fit (pion) - X

- trk x pi:run {flag pi&&nsvd pi>0&&npxd pi==0}
- 10^{3} 0.2 10² -0.1-0.210 -0.3-0.4600 700 900 1000 1100 1200 rack Run#

- Position precision very high with PXD hits, worse with only CDC hits
- What's happening vertexing only CDC tracks? (good question)

trk_x_pi:run {flag_pi&&npxd_pi>0}

Position from Track Fit (pion) - Y

trk_y_pi:run {flag_pi&&npxd_pi==0&&nsvd_pi>0}

trk_y_pi:run {flag_pi&&npxd_pi>0}

Position from Track Fit (pion) - Z

trk_z_pi:run {flag_pi&&npxd_pi==0&&nsvd_pi>0}

trk_z_pi:run {flag_pi&&npxd_pi>0}

Tracks coming from IP

R < 5 cm, |Z| < 10 cm

- Seed values outside acceptance, or very far, coming mainly from non-IP tracks
- Are these real tracks, or fake tracks?

Track Momentum

seed_p {flag_pi}

How does track fit change momentum?

Seed P [GeV/c]

IP and non IP tracks

R < 5 cm, |Z| < 10 cm

The major changes are present for non IP tracks
With IP requirements the distribution is much clearer

P differences between hypotheses?

R < 5 cm, |Z| < 10 cm

Above 1 GeV/c substantially no differences

P differences between hypotheses - 2

R < 5 cm, |Z| < 10 cm, P > 1 GeV/c

Above 1 GeV/c substantially no differences

What about number of tracking hits?

ack Fitting in phase2

Pion vs proton

200

250

Track # hits p

150

50

100

1000 pions at p_t 0.2 GeV/c, 60°

Last December in Pisa

The end

Time for comments, questions, suggestions, whatever