Control of FEL radiation properties by tailoring the seed pulses

Hamburg Alliance New Beams and Accelerators

Vanessa Grattoni Hamburg, 07.09.2018

FEL control driven by seed laser

Importance of the control on the seed laser properties

Control on the seed laser phase permits to:

Correct and control the FEL phase

$$\phi_{FEL}(t) = n(\phi_{seed}(t) + \phi_{electrons}(t)) + \phi_{fel}(t)$$

$$\phi_{seed}(t) = \phi_0 + \omega_0 t + \frac{1}{2}\alpha t^2$$

$$\alpha = 0$$

$$\alpha \neq 0$$

$$\phi_{electrons}(t) \propto \frac{1}{\sigma_F} E(t)$$

• Eventually FEL phase control enables CPA (chirped pulse amplification*) and phase sensitive experiments (four-wave mixing, attosecond coherent control²).

¹Chirped pulse amplification in an extreme-ultraviolet free-electron laser, <u>David Gauthier</u> et al. *Nat. Comm.* **7**, 13688 (2016)

Ultra-short pulses passing through dispersive materials

Introducing Group Delay Dispersion (GDD)

- GDD depends on the material, on the distance travelled by the light in the material and the bandwidth of the considered light pulse
- GDD quantifies the amount of chirp α held from a light pulse $(\phi_{seed}(t) = \phi_0 + \omega_0 t + \frac{1}{2}\alpha t^2)$

Controlling the chirp

Longitudinal phase space distribution measured with TDS

Impact of fused silica on energy modulation

Characterization of seed laser chirp

Chirp gained by passing through seed laser beamline w/o any additional material

$$\sigma_{\omega,seed} = 14.7$$
 THz

$$\sigma_{t,seed}^{FL} \cdot \sigma_{\omega,seed} = \frac{1}{2}$$

$$\sigma^{FL}_{t.seed} = 34 \, \mathrm{fs}$$

Simulated working points

Seed laser pulses at the modulator entrance

Chirp of the seed laser α

Seed laser energy and $\sigma_{\omega,seed}$ is identical for all the simulated pulses.

 $\sigma_{t,seed}$ respect to the GDD of the seed laser

Initial GDD of the seed laser

Simulation results are compared with THz streaking measurement

Seeded FEL pulse depends on FEL optimization:

- •Seed laser power \rightarrow energy modulation of the electron beam $\Delta \gamma$
- ■Strength of dispersion R₅₆

$$\frac{\sigma_{t,seed}}{\sqrt{n}} < \sigma_{t,FEL} < \frac{7}{6} \frac{\sigma_{t,seed}}{n^{1/3}}$$

THz streaking measurement: $\sigma_{t,FEL} = (58 \pm 7.5)$ fs

Seed laser GDD in the modulator $\textit{GDD} = (8.3 \pm 3.2) \cdot 10^3 \; fs^2$

This GDD corresponds to the amount of chirp that a pulse gains passing through (42 ± 16) mm of fused silica.

Summary and Outlook

Summary

- Setup of the sFLASH experiment used to characterize the seed laser chirp
- GENESIS simulation of seeded FEL for different chirp of the seed laser
- THz streaking reveals chirp and duration of the seeded FEL pulse
- Combination of simulation outcome with the THz streaking experiment results enables the estimation of the GDD of the seed laser in front of the modulator

Outlook

- Study the seeded FEL for different amounts of chirp on the seed laser.
- First step towards FEL pulse tailoring driven by seed laser manipulation

Contact

DESY. Deutsches

Elektronen-Synchrotron

Vanessa Grattoni

MPY-1

vanessa.grattoni@desy.de

www.desy.de

Backup

Characterization of the temporal profile of the FEL pulse

$$P_{FEL}(t_i) = \Delta E(t_i) \frac{I(t_i)}{e}$$

T. Plath et al., Scientific Reports, 7, 2431

Uncompressed electron beam and opened radiator

Characterization of seeded laser pulses at sFLASH

Experiment overview

THz streaking

- → temporal profile of the FEL pulse
- → enables derivation of the seed laser chirp at the interaction point in MOD2

 DESY. | Control of FEL radiation properties by tailoring the seed laser pulses | Vanessa Grattoni, 07.09.2018

TDS based longitudinal overlap

- Used to adjust the longitudinal overlap between the e-beam and the seed laser pulse when they have been already coarsely overlapped: they are in a temporal window of 200 ps
- Setup: modulator closed to resonance condition, radiator open, e-beam decompressed

 $\Delta \gamma_{seed} = (350 \pm 50) \ keV$

DESY. Page 17

Controlling the chirp

Tailoring electromagnetic pulses

• Case of positive dispersion (GDD>0) $GDD = \frac{d}{d\omega} \left(\frac{1}{v_q(\omega)} \right)$

$$GDD_{seed} \cdot \sigma_{\omega,I}^2 = \alpha_{seed} \cdot \sigma_{t_f,I}^2$$

$$TBP_f = \sigma_{\omega,I} \cdot \sigma_{t_f,I} = 0.5 \cdot \sqrt{1 + \left(2\sigma_{t_f,I}^2\alpha\right)^2}$$

DESY. Page 19

Tailoring electromagnetic pulses

• Group delay dispersion (case: GDD>0) $GDD = \frac{d}{d\omega} \left(\frac{1}{v_g(\omega)} \right)$

 $TBP_i = \sigma_{\omega,I} \cdot \sigma_{t_i,I} = 0.5$

DESY.