Diagnostics and Feedback Controls of Lasers for Accelerators

Uwe Große-Wortmann, DESY FS-LA group Hamburg, 2018-09-06

The FS-LA electronics team

for reliable laser systems running 24/7, we have to provide...

Diagnostics

average power, pulse energies, beam profiles and positions

Laser controls

- set laser parameters (pulse pattern, power,...)
- adjustment of optical elements

Laser timing

generate triggers for amplifiers, pulse picking

Development of customized electronics

 in many cases, no off-the-shelf devices are available

Integration of all control electronics into DOOCS

remote control, logging of performance data

Control System Overview

PLC controls OPC UA to DOOCS

PLC based controls

"slow" signals, update rates up to a few Hz

Programmable Logic Controller: industrial automation technology

OPC UA to DOOCS interface

- OPC UA: Open Platform Communication Unified Architecture (open standard for machine-to-machine communication)
- Generic DOOCS server to communicate with PLCs using OPC UA
- Easy, automated set-up
 - 1. PLC publishes list of variables and methods
 - 2. DOOCS properties are automatically generated

Laser pulse picking and burst shaping

Pulse picking and burst shaping

AOMs between amplifier stages used for pulse picking and amplitude shaping

Creating a flat laser burst

- 10Hz burst operation is challenging for laser operations
 - crystals heat up during burst
 - pump energy is stored in cyrstals for µs to ms
- No equilibrium state is reached, gain is non-uniform, burst is not flat
- Ways to solve this:
 - from a longer burst, cut out a part which is relatively flat
 - modulate the pump power of the amplifier
 - intensity-modulate each seed laser pulse (using AOMs)

Burst shaping at XFEL photocathode laser 2

- AOM before the last power amplifier pre-distorts the seed burst to achieve a flat UV burst
- First implemented: manually tweaked look-up-table (LUT)

using Iterative Learning Control (ILC)

- Development in collaboration with Sven Pfeiffer (DESY MSK group)
- Controlling the electron bunch charge
- ILC algorithm optimizes the LUT for a flat charge over the burst
- Optimized LUT can be saved for each laser operation mode (frequency, number of pulses) and be reloaded automatically

Iterative Learning Control (ILC)

Starting from flat DAC control signal.

Iterative Learning Control (ILC)

Running ILC algorithm

Iterative Learning Control (ILC)

Running ILC algorithm

Iterative Learning Control (ILC)

200

0

0

Running ILC algorithm

600

400

Iteration Number

Iterative Learning Control (ILC)

- Running ILC algorithm
- Dips in charge are problems due to a switching power supply during the time of algorithm development.

Iterative Learning Control (ILC)

- Running ILC algorithm
- Dips in charge are problems due to a switching power supply during the time of algorithm development.

Iterative Learning Control (ILC)

- Running ILC algorithm
- Dips in charge are problems due to a switching power supply during the time of algorithm development.

Iterative Learning Control

- Demonstration of convergence of algorithm (system was performing poorly at time of algorithm testing due to broken switching power supply).
- Independent of number of pulses and pulse rate.

Electron bunch charge vs. UV pulse energy

- Electron bunch charge shows slight deviation from laser's UV pulse energy along the pulse train
- By using charge as input for optimization those effects can also be precompensated

Summary

Laser remote controls and online diagnostics

- Power, pulse energies and timing
- Lab infrastructure, Safety and environment
- Versatile OPC UA to DOOCS interface

Laser burst control

- AOM used for burst envelope shaping
- Iterative feed-forward algorithm to flatten the electron charge in the burst
- Pre-compensation of distortions in amplifiers
- Various burst shapes possible

Thank you for your attention!

Contact

DESY. Deutsches

Elektronen-Synchrotron

www.desy.de

Uwe Große-Wortmann

FS-LA electronics team

uwe.grosse-wortmann@desy.de

040 8998 6389