Weak Interactions

The Theory of GLASHOW, SALAM and WEINBERG

(Nobel 1979)

Theory of the unified weak and electromagnetic interaction, transmitted by exchange of "intermediate vector bosons"

18-20.7.18

Discovery of the W and Z (1983)

- To produce the heavy W and Z bosons (m ~ 80-90 GeV) need high energy collider!
- 1978-80: conversion of SPS proton accelerator at CERN into proton-antiproton collider challenge: make antiproton beam!

success!

-> first W and Z produced 1982/83

Simon van der Meer

18.-20.7.18

A. Geiser, Particle Physics

Z production at LHC

Now millions of events ...

yesterday's signal is today's background and tomorrow's calibration

Three Boson Coupling @ LEP

W/Z bosons carry electroweak charge (like colour for gluons) -> measure rate of W pair production at LEP II

Electroweak Physics at HERA

Neutral Current (NC) interactions

Charged Current (CC) interactions

Weak interactions are "left-handed"

Electroweak Unification

Strength of weak and electromagentic forces become similar at scale $Q^2 \sim M_W^2$

The Quest for Unification of Forces

α_{s} running and Grand Unification

hep-ph/0407067 B.Allanach ... P.Zerwas

with SUSY (see later):

Antimatter

relativistic Schrödinger equation (Dirac equation) two solutions: (Nobel 1933) one with positive, one with negative energy Dirac: interpret negative solution as **antimarticle** 1932 antielectrons (positrons) found in conversion of energy into matter C.D.Anderson (Nobel 1936) 1995 antihydrogen consisting of antiprotons and positrons produced at CERN In principle: antiworld can be built from antimatter In practice: produced only in accelerators and

P.A.M.

Dirac

10

18-20.7.18

in cosmic rays

A. Geiser, Particle Physics

Pair Production

Annihilation

The Matter Antimatter Puzzle

As far as we can see in universe, no large-scale antimatter. -> need CP violation! 13

18.-20.7.18

The Matter Antimatter Puzzle

Early Universe

-> particles, anti-particles and

photons in thermal equilibrium

- colliding, annihilating, being re-created etc.

Slight difference in fundamental interactions between matter and antimatter ("CP violation") ?

-> matter slightly more likely to survive

Ratio of baryons (e.g. p, n) to photons today tells us about this asymmetry – it is about 1:10⁹

CP symmetry

graphics: M.C. Escher

Like weak interaction, symmetric under CP (at first sight!) Can there be small deviations from this symmetry?

18.-20.7.18

A. Geiser, Particle Physics

CP violation in B meson decays

CP violation in B meson decays

Example: measurement from BaBar at SLAC

(also Belle at KEK)

B and anti-B are indeed different

> (also found earlier for K decays:)

James W. Cronin (Nobel 1980) 18.-20.7.18

A. Geiser, Particle Physics

Interactions

Weak

violate CP!

M. Kobayashi T. Maskawa (Nobel 2008) 17

The Mystery of Mass C up charm 0 S 0 down strange e e-neutrino μ e Ô µ-neutrino electron muon

A. Geiser, Particle Physics

18

The Mass (BEH) Mechanism

19

18.-20.7.18

A. Geiser, Particle Physics

Fermion Mass from Higgs field?

Fermion Mass from Higgs field?

Fermion Mass from Higgs field?

MIDLES

Neutrino oscillations: neutrinos are massive!

18.-20.7.18

A. Geiser, Particle Physics

23

(Nobel 2015)

What do we know about Neutrino mass?

are the masses of Dirac type (generated by Higgs)? or of Majorana type (v's are their own antiparticles, masses have non-Standard Model origin)?

CP violation? 18.-20.7.18

for physics beyond Standard Model 24