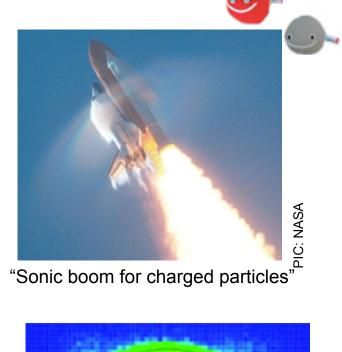
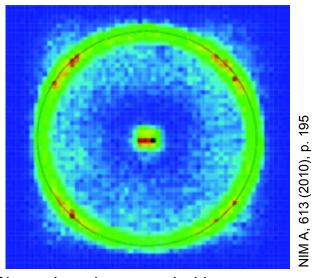


CHERENKOV-RADIATION

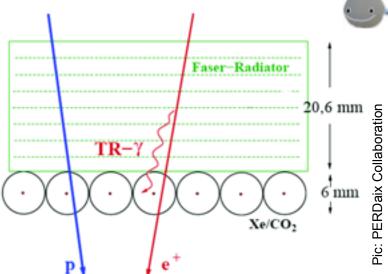

- Emission of photons when a charged particle is faster than speed of light within a medium (n>1).
- Typically in transparent material: threshold
- Suitable for particle identification!
 - Only depending on β if momentum known.


Emission under a characteristic Angle:

$$\cos\theta_c = \frac{ct/n}{vt} = \frac{1}{n\beta}$$

- Cherenkov angle: between 1° (air) to 45° (quartz).
- Number of photons is small -> good detectors are needed for the detection.

Cherenkov ring recorded by an array of silicon photomultipliers (pions).

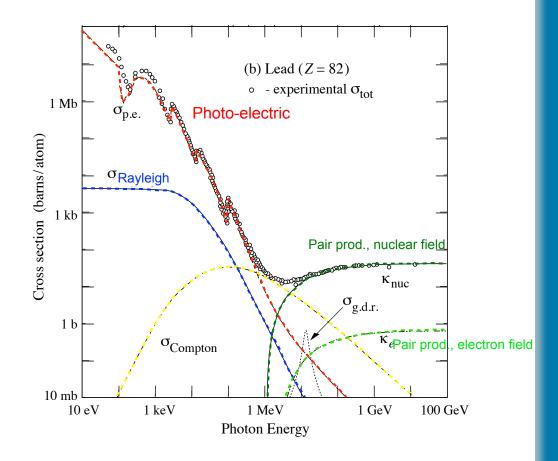


TRANSITION RADIATION

Transition Radiation

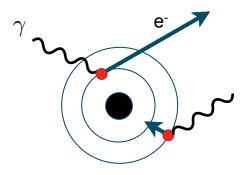
- is produced by relativistic charged particles when they cross the interface of two media of different refraction indices
- can be explained by re-arrangement of electric field
- significant radiation only at large γ (O ~ 1000) in the keV range. Very useful for electron/pion separation

- Energy loss at a boundary is proportional to the relativistic gamma factor.
- A significant amount of transition radiation is produced for a gamma greater then 1000.
- Gamma factor of protons is, up to a momentum of 5GeV, still in the order of 10.
- Positron's gamma is greater than 1000 starting at 0.5GeV momentum.

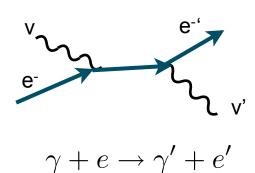

Both effects are not really contributing to the energy loss of the particles!

PHOTONS: INTERACTIONS

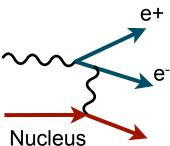
- Photons appear in detector systems
 - as primary photons,
 - created in Bremsstrahlung and de-excitations
- Photons are also used for medical applications, both imaging and radiation treatment.
- Photons interact via 6 mechanisms depending on the photon energy:
 - < few eV: molecular interactions</p>
 - < 1 MeV: photoelectric effect</p>
 - < 1 MeV: Rayleigh scattering</p>
 - ~ 1 MeV: Compton scattering
 - > 1 MeV: pair production
 - > 1 MeV: nuclear interactions



PHOTONS: INTERACTIONS



Most dominating effects:


Photo-Effect

Compton-Scattering

Pair creation

 $\mathsf{A}\gamma$ is absorbed and photoelectron is ejected.

- the γ disappears,
- the photo-electron gets an energy

$$E_{\rm p.e} = E_{\gamma} - E_{\rm binding}$$

Elastic scattering of a photon with a free electron

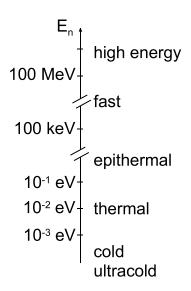
$$E_{\gamma}' = \frac{1}{1 + \epsilon (1 - \cos \theta_{\gamma})}$$

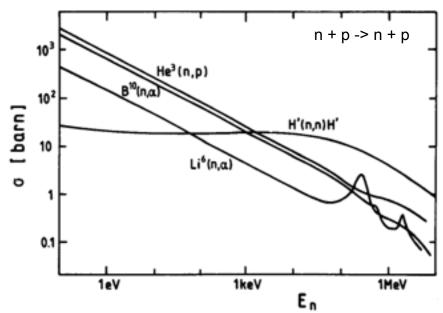
Only possible in the Coulomb field of a nucleus (or an electron) if

$$E_{\gamma} \geq 2 m_e c^2$$
 ~1.022 MeV

Reduction of photon intensity with passage through matter:

$$I(x) = I_0 e^{-\mu x}$$

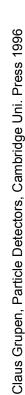

INTERACTIONS OF NEUTRONS

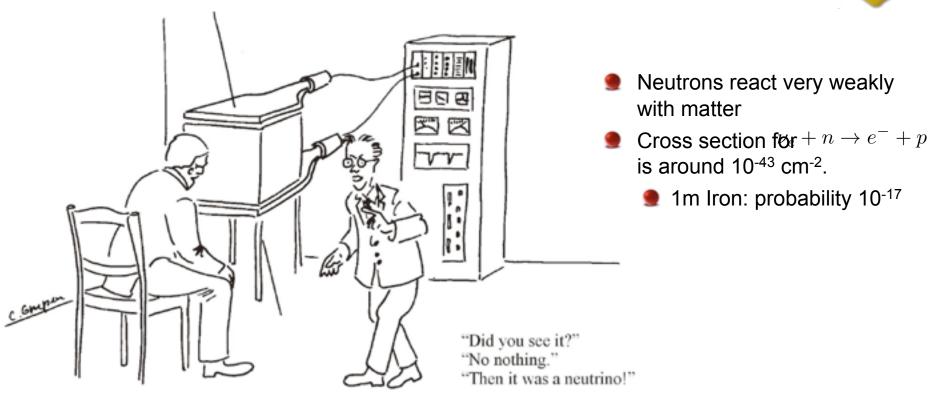


- Neutron interaction is based only on strong (and weak) nuclear force.
- To detect neutrons, one has to create charged particles.
- Possible neutron conversion and elastic reactions ...

$$\begin{pmatrix}
 n + ^{6} \text{Li} \rightarrow \alpha + ^{3} \text{H} \\
 n + ^{10} \text{B} \rightarrow \alpha + ^{7} \text{Li} \\
 n + ^{3} \text{He} \rightarrow p + ^{3} \text{H}
 \end{pmatrix}
 \qquad
 E_{n} < 20 \text{MeV}$$

$$n + p \rightarrow n + p
 \qquad
 E_{n} < 1 \text{GeV}$$


In addition there are...

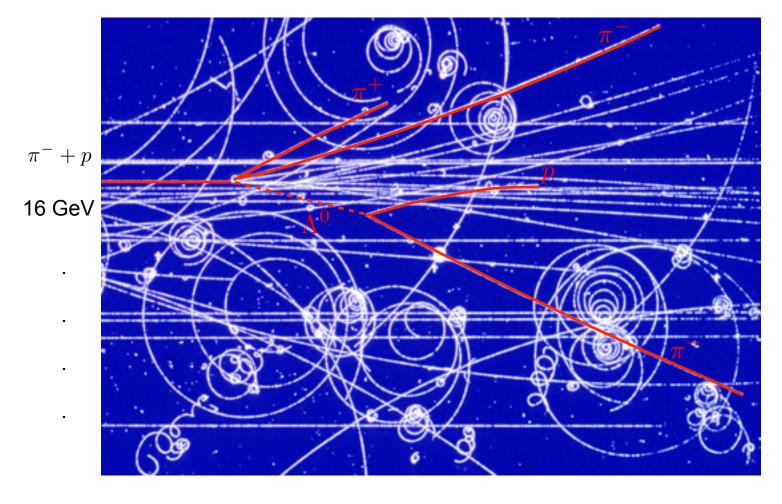

- inelastic reactions → hadronic cascades E_n > 1 GeV
- same detection principals as for other hadrons (calorimeter)

A SHORT WORD ON NEUTRINOS...

- In collider experiments fully hermetic detectors allow indirect detection
 - Sum up all visible energy and momentum in detector
 - Missing energy and momentum belong to neutrino(s)

SUMMARY PART 1

Ionisation and Excitation:


- Charged particles traversing material are exciting and ionising the atoms.
- Average energy loss of the incoming charged particle: good approximation described by the Bethe Bloch formula.
- The energy loss fluctuation is well approximated by the Landau distribution.

Multiple Scattering and Bremsstrahlung:

- Incoming particles are scattering off the atomic nuclei which are partially shielded by the atomic electrons.
- Measuring the particle momentum by deflection of the particle trajectory in the magnetic field, this scattering imposes a lower limit on the momentum resolution of the spectrometer.
- The deflection of the particle on the nucleus results in an acceleration that causes emission of Bremsstrahlungs-Photons. These photons in turn produced e+e- pairs in the vicinity of the nucleus....

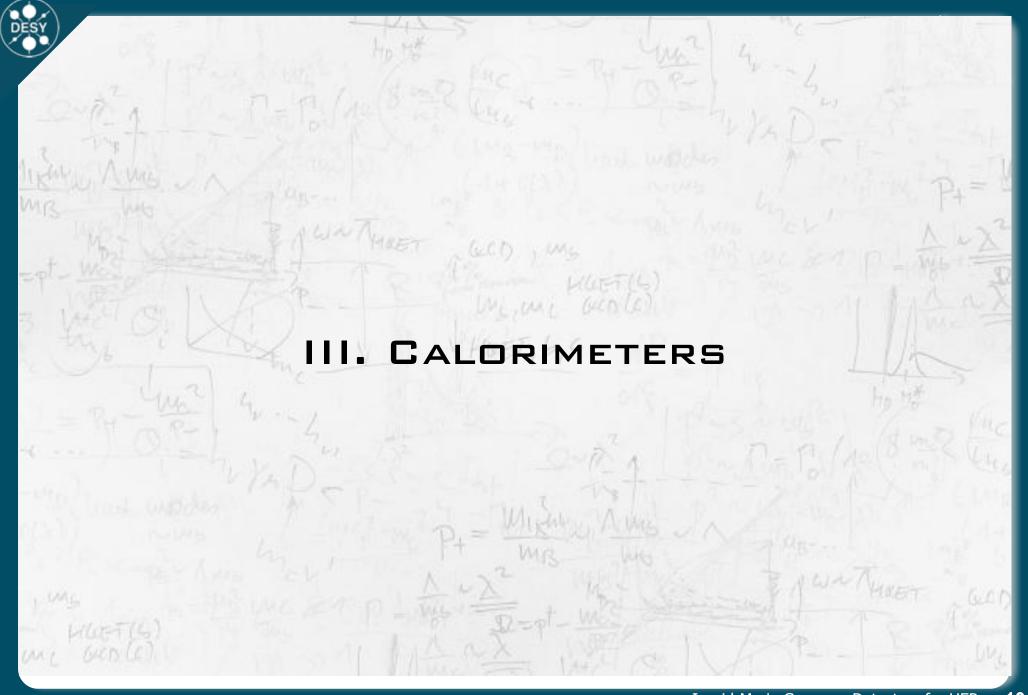
A SHORT SUMMARY

Lifetime of lambda: 2.6 10⁻¹⁰ sec -> a few cm

$$\pi^- + p \to K_s^0 + \Lambda$$

© 1960 CERN

The decay of a lambda particle in the 32 cm hydrogen bubble chamber


OVERVIEW

- I. Detectors for Particle Physics
- II. Interaction with Matter
- III. Calorimeters
- IV. Tracking Detectors
 - Gas detectors
 - Semiconductor trackers

V. Examples from the real life

Thursday

Wednesday

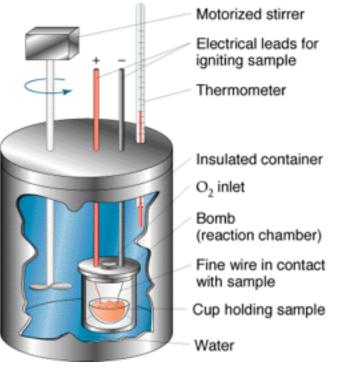
CALORIMETRY

CALORIMETRY: THE IDEA BEHIND IT

Calorimetry originated in thermo-dynamics

The total energy released within a chemical reaction can be measured by measuring the temperature difference

In particle physics:


Measurement of the energy of a particle by measuring the total absorption

the total absorption

Ice-calorimeter from Antoine Lavoisier's 1789 *Elements of Chemistry*.

 What is the effect of a 1 GeV particle in 1 litre water (at 20°C)?

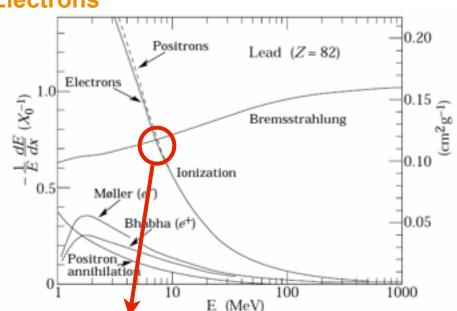
$$\Delta T = E / (c \cdot M_{water}) = 3.8 \cdot 10^{-14} \text{K}!$$

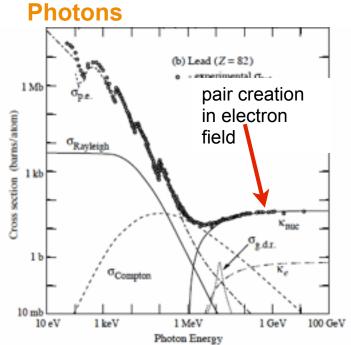
CALORIMETRY: OVERVIEW

- Basic mechanism for calorimetry in particle physics:
 - formation of electromagnetic
 - or hadronic showers.
- The energy is converted into ionisation or excitation of the matter.

Charge

Cerenkov light
Scintillation light

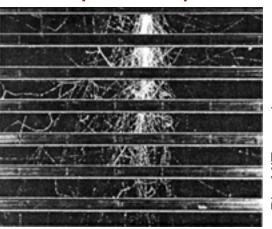

- Calorimetry is a "destructive" method. The energy and the particle get absorbed!
- Detector response ∝E
- Calorimetry works both for charged (e± and hadrons) and neutral particles (n,γ)!

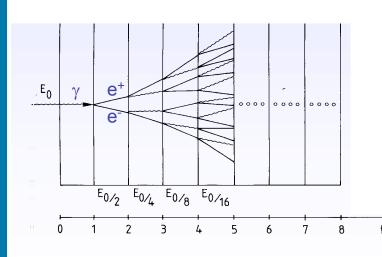


REMINDER

Electrons

- Critical energy: the energy at which the losses due to ionisation and Bremsstrahlung are equal
- Radiation length defines the amount of material a particle has to travel through until the energy of an electron is reduced by Bremsstrahlung to 1/e of its original $\langle E_e(x) \rangle \propto e^{\frac{x}{X_0}}$ energy


empirical:
$$X_0 = \frac{716.4\,A}{Z(1+Z)\,ln(287/\sqrt{Z})}\,\frac{g}{cm^2}\,\propto\,\frac{A}{Z^2}$$

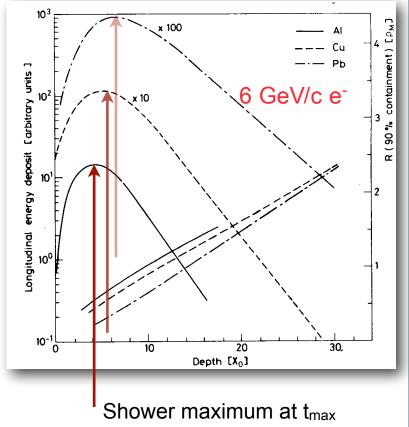

ELECTROMAGNETIC SHOWERS

- High energetic particles: forming a shower if passing through (enough) matter.
- An alternating sequence of interactions leads to a cascade:
 - Primary γ with E₀ energy produces e+e- pair with 54% probability in layer X₀ thick
 - On average, each has E₀/2 energy
 - If $E_0/2 > E_c$, they lose energy by Bremsstrahlung

Pic: MIT cosmic ray group

- Next layer X_0 , charged particle energy decreases to $E_0/(2e)$
- Bremsstrahlung with an average energy between $E_0/(2e)$ and $E_0/2$ is radiated
- Radiated γs produce again pairs
- After t radiation lengths
 - number of particles

$$N \simeq 2^t$$


$$E_N \simeq \frac{E_0}{2^t}$$

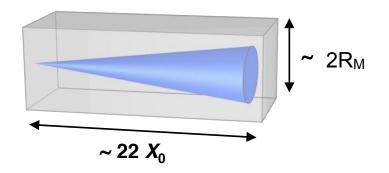
EM SHOWER PROPERTIES

Shower continues until energy of particles below critical energy.

$$E(t_{max}) = \frac{E_0}{2^{t_{max}}} = E_c$$

$$t_{max} = \frac{\ln \frac{E_0}{E_c}}{\ln 2} \qquad N_{max} \simeq \frac{E_0}{E_c}$$

- Simple model only, for more details MC simulation required.
- Shower curve should rise rapidly to a peak value and then fall to zero.
- The broad peak of the experimental curve can be interpreted in terms of a energy spread of the incoming particles.
- Long tail due to muon interactions producing knock-on electrons capable of making a contribution to the cascade process.

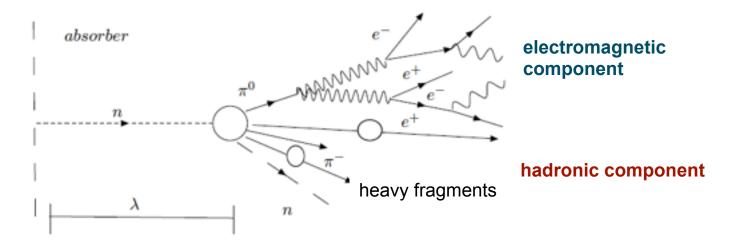


EM SHOWER PROPERTIES

- Longitudinal development governed by the radiation length X₀.
- Lateral spread due to electron undergoing multiple Coulomb scattering:
 - 95% of the shower cone is located in a cylinder with radius 2 RM
 - Beyond this point, electrons are increasingly affected by multiple scattering
 - Lateral width scales with the Molière radius RM
 - Important parameter for shower separation

$$R_{M} = X_{0} \frac{E_{s}}{E_{c}} = 21.2 MeV * \frac{X_{0}}{E_{c}}$$
 $E_{S} = m_{e}c^{2}\sqrt{4\pi/\alpha} = 21.2 MeV$

Example: E_0 = 100 GeV in lead glass Ec=11.8 MeV $\rightarrow Nc \approx 13$, $t_{95\%} \approx 23$ $X_0 \approx 2$ cm, RM= 1.8· $X_0 \approx 3.6$ cm

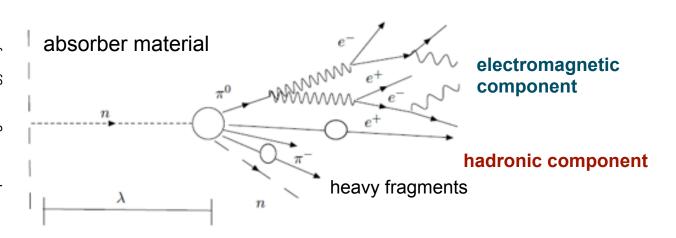


HADRONIC CASCADE

Within the calorimeter material a hadronic cascade is build up: in inelastic nuclear processes more hadrons are created

The length scale of the shower is given in means of the nuclear reaction length λ_l

$$\lambda_l = \frac{A}{N_A \sigma_{total}}$$


total cross section for nuclear processes

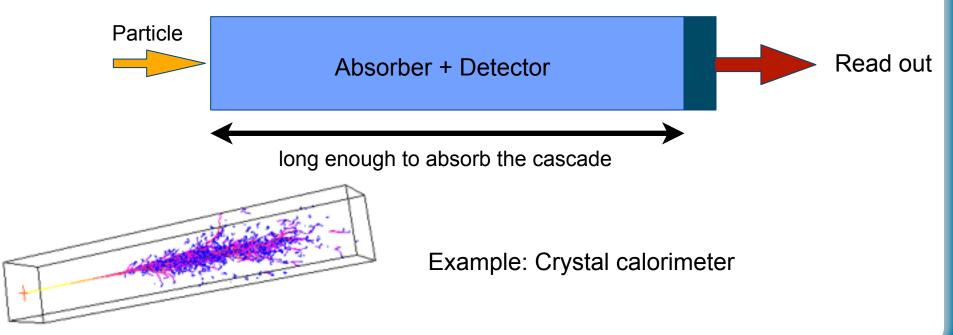
Compare X₀ for high-Z materials, we see that the size needed for hadron calorimeters is large compared to EM calorimeters.

	λι	X ₀
Polystyren	81.7 cm	43.8 cm
PbWO	20.2 cm	0.9 cm
Fe	16.7 cm	1.8 cm
W	9.9 cm	0.35 cm

HADRONIC CASCADE: THE DETAILS

Hadronic showers are way more complicated than em showers.

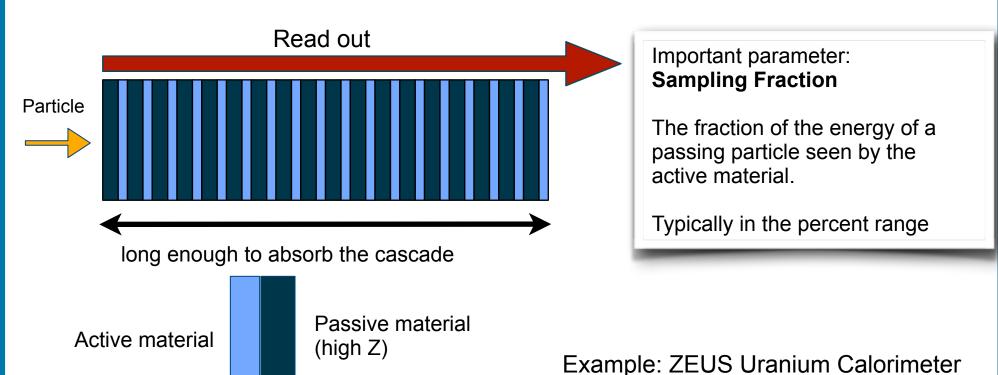
- Different processes are created by the impinging hadron:
 - high energetic secondary hadrons taking a significant part of the momentum of the primary particle [e.g. O(GeV)]
 - a significant part of the total energy is transferred into nuclear processes: nuclear excitation, spallation, ... Particles in the MeV range
 - neutral pions (1/3 of all pions), decay instantaneously into two photons start of em showers
 - Breaking up of nuclei (binding energy) neutrons, neutrinos, soft γ's, muons


invisible energy

- -> large energy fluctuations
- -> limited energy resolution

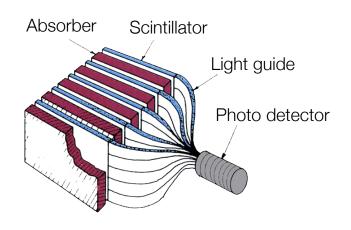
CALORIMETER TYPES

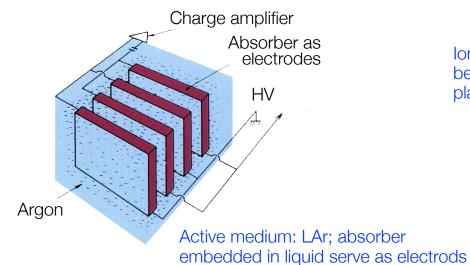
- Two different types of calorimeters are commonly used: Homogeneous and Sampling Calorimeter
- Homogeneous Calorimeter
 - The absorber material is active; the overall deposited energy is converted into a detector signal
 - Pro: very good energy resolution
 - Contra: segmentation difficult, selection of material is limited, difficult to built compact calorimeters

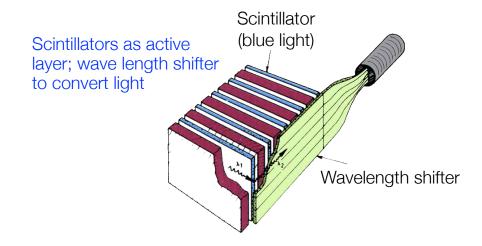


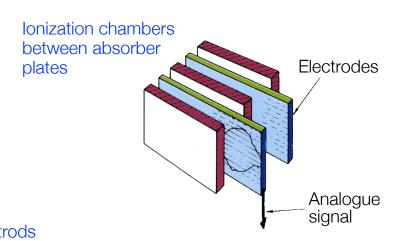
SAMPLING CALORIMETER

Sampling Calorimeter


- A layer structure of passive material and an active detector material; only a fraction of the deposited energy is "registered"
- Pro: Segmentation (transversal and lateral), compact detectors by the usage of dense materials (tungsten, uranium,...)
- Contra: Energy resolution is limited by fluctuations






SAMPLING CALOS: POSSIBLE SETUPS

Scintillators as active layer; signal readout via photo multipliers

CALORIMETER: IMPORTANT PARAMETER (1)

The relative energy resolution of a calorimeter is parametrised:

$$(\frac{\Delta E}{E})^2 = (\frac{c_s}{\sqrt{E}})^2 + (\frac{c_n}{E})^2 + (c_c)^2$$

- Stochastic term cs
 - the resolution depends on intrinsic shower fluctuations, photoelectron statistics, dead material in front of calo, and sampling fluctuations
- Noise term cn
 - Electronic noise, radioactivity, i.e. dependent of the energy
- Constant term cc
 - Energy independent term contributing to the resolution: due to inhomogeneities with in the detector sensitivity, calibration uncertainties and radiation damage

Losses of Resolution:

- Shower not contained in detector → fluctuation of leakage energy; longitudinal losses are worse than transverse leakage.
- Statistical fluctuations in number of photoelectrons observed in detector.
- Sampling fluctuations if the counter is layered with inactive absorber.

