

CALORIMETER: IMPORTANT PARAMETER (1)

The relative energy resolution of a calorimeter is parametrised:

$$(\frac{\Delta E}{E})^2 = (\frac{c_s}{\sqrt{E}})^2 + (\frac{c_n}{E})^2 + (c_c)^2$$

- Stochastic term cs
 - the resolution depends on intrinsic shower fluctuations, photoelectron statistics, dead material in front of calo, and sampling fluctuations
- Noise term cn
 - Electronic noise, radioactivity, i.e. dependent of the energy
- Constant term cc
 - Energy independent term contributing to the resolution: due to inhomogenities with in the detector sensitivity, calibration uncertainties and radiation damage

Losses of Resolution:

- Shower not contained in detector → fluctuation of leakage energy; longitudinal losses are worse than transverse leakage.
- Statistical fluctuations in number of photoelectrons observed in detector.
- Sampling fluctuations if the counter is layered with inactive absorber.
- **9**

CALOS: ACTIVE MATERIAL

Active material

- Detectors based on registration of excited atoms
- Emission of photons by excited atoms, typically UV to visible light.
 - Observed in noble gases (even liquid!)
 - Polyzyclic Hydrocarbons (Naphtalen, Anthrazen, organic scintillators) -> Most important category.
 - Inorganic Crystals -> Substances with largest light yield. Used for precision measurement of energetic Photons.

- PbWO₄: Fast, dense scintillator,
 - Density ~ 8.3 g/cm³ (!)
 - ρ_M 2.2 cm, X₀ 0.89 cm
 - low light yield: ~ 100 photons / MeV

SCINTILLATORS TO MEASURE THE ENERGY

- An incident photon or particle ionises the medium (on band structure level).
- Ionised electrons slow down causing excitation.
- Excited states immediately emit light.

Inorganic scintillators

- Fluorescence is known in many natural crystals.
 - UV light absorbed
 - Visible light emitted
- Artificial scintillators can be made from many crystals.
 - Doping impurities added
 - Improve visible light emission

Advantages:

- Good efficiency
- Good linearity
- Radiation tolerance

Disadvantage:

- Relatively slow
- Crystal structure needed (small and expensive)

source: Wikipedia

SCINTILLATORS TO MEASURE THE ENERGY

Active material

Organic scintillators

- Organic cintillators are aromatic hydrocarbon compounds (containing benzene ring compounds)
- The scintillation mechanism is due to the transition of electrons between molecular orbitals
 - organic scintillators are fast ~ few ns.
- Excited states radiate photons in the visible and UV spectra.
 - Fluorescence is the fast component
 - Phosphorescence is the slow component

- Organic scintillators can be mixed with polystyrene to form a rigid plastic.
 - Easy to mold
 - Cheaper than crystals

LIGHT TRANSPORT

- The photons are being reflected towards the end of the scintillator
- A light guide brings the light to a Photomultiplier

- UV light enters the light guide material
- Light is transformed into longer wavelength (wavelength shifter)
- -> Total internal reflection inside the WLS material
- -> 'transport' of the light to the photo detector

DETECTING THE LIGHT

- The classic method to detect photons are photomultipliers
 - Conversion of a photon into electrons via photo-electric effect when the photon impinges on the photo cathode
 - The following dynode system is used to amplify the electron signal
 - Usable for a large range of wave lengths (UV to IR)
 - good efficiencies, single photon detection possible
 - large active area possible (SuperKamiokande O 46cm)

Source: Cutnell and Johnson, 7th edition image gallery

EXAMPLE: ZEUS CALO

A rather hostile environment in ZEUS at HERA

- bunch crossing every 96ns
- high beam gas rate
- very energetic particles produced

Requirements for the ZEUS calorimeter:

- hermeticity
- dead time free readout
- time resolution in nanosecond range
- uniform response
- radiation tolerance (15 years of running)
- electron-hadron separation
- good position resolution
- good electron and jet energy resolution

Keep in mind: this was developed in the middle of the 80s!

e ±

THE ZEUS CALORIMETER - SOLUTION

highly-segmented, uranium scintillator sandwich calorimeter read out with photomultiplier tubes (PMTs)

Uranium + Scintillator:

- compensation
- high Z material -> more compact size of calorimeter
- natural radioactivity provides means of calibration

- Very hermetic: covering up to η <4.2 in the forward direction and η <-3.8 in the rear direction.
- Readout by 12,000 phototubes (PMTs)

DESIGN

Layers:

- choice of active and passive thicknesses -> compensation (e/h = 1.0)
- uniformity in structure + natural radioactivity > good calibration
- F/B/RCAL with ~6000 cells
 - EM cell size: 5x20 (10x20) cm² in F/ BCAL (RCAL)
 - HA cell size: 20x20 cm²
- Cell read out on both sides with wavelength shifters
 - redundancy
 - transverse position measurement within the cell

3m x 5m x 0.2m, 12tons total of 80 modules

TEST BEAM AT CERN

Electrons: $\frac{\sigma(E)}{E} = \frac{18\%}{\sqrt{E(GeV)}}$

Hadrons: $\frac{\sigma(E)}{E} = \frac{35\%}{\sqrt{E(GeV)}}$

Operation characteristics were determined in test beams at CERN (prototype detector)

Production modules were all calibrated at CERN

CALIBRATION METHODS

- Natural uranium activity provides absolute energy calibration in situ!
 - 98.1% U²³⁸ + 1.7% Nb + 0.2% U²³⁵
 - Half-Life of U²³⁸ is 4.5 *10⁹ years
- Detectable uranium induced signal current
- Uranium noise signal
 - ~ 2MHz (EM Calo)
 - ~10MHz (Hadronic Calo)
- with Uranium noise calibration can be tracked very easy

Stable radioactivity - good for calibration

Uranium current versus channels of one module

- 1) Uranium noise
- 2 Charge injection
- 3 Pedestals and Gains

Channels out of range -> declared as "bad" until readjusted

HARDWARE PERFORMANCE

- Number of bad channels versus run number (over years)
- "Bad channels" are excluded from data taking -> reducing the calo performance in that area
- Read out from both sides -> bad channel is not complete loss of information
- Ups and downs visible in bad channel behaviour over the years

- At the time of the shutdown (30.06.2007):
 - only ~ 2% bad channels (one side) and only 2 holes (both sides failed) -> 0.3 per mille
- In general very stable and robust system
- Front End Cards:
 - About 1000 necessary for the running, ~10% spares
 - Main failure mode: buffer or pipeline chip (socketed)
 - Cards easy to debug and maintain
 - Failure rate: <1/month (12 channels one side)</p>
 - Very successful

OVERVIEW OF CALORIMETERS

ATLAS

In order to maximise the sensitivity for $H \to \gamma \gamma$ decays, the experiments need to have an excellent e/γ identification and resolution

LAr hadronic end-cap (HEC) LAr electromagnetic end-cap (EMEC) LAr electromagnetic barrel LAr electromagnetic barrel LAr forward (FCal) MBERS Tabe, 410 Resistive Flate Chambers thate Stay, 912 Resistive Flate Chambers

CMS

CMS CALORIMETER

- ECAL: homogeneous calo
 - high resolution Lead Tungsten crystal calorimeter -> higher intrinsic resolution
 - 80000 crystals each read out by a photodetector
 - constraints of magnet -> HCAL absorption length not sufficient
 - tail catcher added outside of yoke
- HCAL: sampling calo
 - 36 barrel "wedges", each weighing 26 tonnes
 - brass or steel absorber
 - plastic scintillators
 - read out by hybrid photodetectors

CMS Lead tungsten crystals, each 1.5kg (CERN)

CMS ECAL during installation (CERN)

ATLAS CALORIMETER

- ECAL + HCAL: sampling calo
 - Liquid argon LAr calorimeter > high granularity and longitudinally segmentation (better e/ ID)
 - Electrical signals, high stability in calibration & radiation resistant (gas can be replaced)
 - Solenoid in front of ECAL -> a lot of material reducing energy resolution
 - Accordion structure chosen to ensure azimuthal uniformity (no cracks)
 - Liquid argon chosen for radiation hardness and speed
 - Tile calorimeter: covering outer region
 - "Conventional" steel absorber with plastic scintillators.

ATLAS Hadronic endcap Liquid Argon Calorimeter. (CERN)

CALORIMETERS AT LHC

All LHC experiments have a calorimetric system with at least an electromagnetic and a hadronic part

Overview EM calorimeters at LHC

	Calorimeter Material Number of channels			Angular coverage	Energy resolution		
						c_s (%)	c_c (%)
ATLAS	EM barrel	LAr + Pb	109,568	5	$ \eta < 1.475$	10	0.7
	EM end-cap	LAr + Pb	63,744	samplin	$1.375 < \eta < 3.2$	10	0.7
	FCal	LAr + Cu	2016	san	$3.1 < \eta < 4.9$	28.5	3.5
CMS	ECAL barrel	$PbWO_4$	61,200		$ \eta < 1.479$	2.8	0.3
	ECAL end-cap	PbWO ₄ homog	14,648 eneous		$1.479 < \eta < 3.0$	2.8	0.3
LHCb	ECAL	Scint. + Pb	6016	sampling	$0.756 < \eta_x < 2.19$ $1.037 < \eta_y < 2.19$	9	0.8
ALICE	PHOS	$PbWO_4$	17,920	ampling	$ \eta < 0.12,$ $220^{\circ} <$ $\phi < 320^{\circ}$	3.3	1.1
	EMCal	Scint. + Pb	12,672	sam	$ \eta < 0.7,$ $80^{\circ} < \phi <$ 187°	10	2

As expected, the sampling based on lead as absorber have a slightly worse resolution than the homogeneous crystal calorimeters.

Source: LHC - the Harvest of Run 1

HADRONIC CALOS AT LHC

	Calorimeter	Material	Number of	Angular coverage	Energy resolution	
			channels		c_s (%)	c_{c} (%)
ATLAS	Tile	Scint. + Pb	9852	$ \eta < 1.7$	52	3
	HEC	LAr + Cu	5632	$1.5 < \eta < 3.2$	84	_
	FCal	LAr + W	1508	$3.1 < \eta < 4.9$	94	7.5
CMS	НВ	Scint. + steel/brass	2592	$ \eta < 1.3$	90	9
	HE	Scint. + steel/brass	2592	$1.3 < \eta < 3$	90	9
	НО	Scint. + steel	2160	$ \eta < 1.4$	_	_
	HF	Quartz fibre + steel	1728	$3 < \eta < 5.2$	120	_
LHCb	HCAL	Scint. + steel	1488	$ \eta_x < 1.87$	69	9
				$ \eta_y < 2.07$		

All sampling calorimeter

CURRENT HADRON CALOS ... AND DREAMS

Tower-wise readout: light from many layers of plastic scintillators is collected in one photon detector (typically PMT) O(10k) channels for full detectors

Extreme granularity to see shower substructure: small detector cells with individual readout for Particle Flow O(10M) channels for full detectors

PARTICLE FLOW CALORIMETER

- Attempt to measure the energy/momentum of each particle with the detector subsystem providing the best resolution
- Need
 - a calorimeter optimised for photons: separation into ECAL + HCAL
 - to place the calorimeters inside the coil (to preserve resolution)
 - to minimise the lateral size of showers with dense structures
 - the highest possible segmentation of the readout
 - to minimise thickness of the active layer and the depth of the HCAL

NEW CONCEPTS: HIGHLY GRANULAR CALOS

- CALICE (CAlorimeter for a Linear Collider Experiment) HCAL prototype:
 - highly granular readout: $3 \times 3 \text{ cm}^2$ scintillator tiles, 38 layers (~4.7 λ_{int}), each tile with individual SiPM readout

tiles in one layer

scintillator tile with WLS fiber

Silicon photo-multiplier

CALICE: HADRONIC SHOWER STUDIES

CALOS: NOT ONLY AT ACCELERATORS!

Flux of cosmic ray particles as a function of their energy.

The methods used in particle physics are more and more used in astro particle physics.

Requirements are different

- Search for extremely rare reactions
 - Large areas and volumina have to be covered
 - Background needs to be well suppressed
 - High efficiency: no event can be lost!
 - Data rate, radiation damage etc. are less of a problem

AIR SHOWER

TWO TECHNIQUES

- The atmosphere as homogeneous calorimeter:
 - Energy measurement by measuring the fluorescence light

This is only possible with clear skies and darkness!

- A one-layer sampling calorimeter 11 λ
 absorber
 - Energy measurement using particle multiplicity

Always possible but has large uncertainties!

AUGER-SOUTH: ARGENTINIAN PAMPA

- 1600 water-Cherenkov detectors on ground
- 4 Flourorescence-stations with 6 telescopes
- Covered area:3000 km² (30 x Paris)
- Designed to measure energies above 10¹⁸eV

AUGER-DETEKTOR: GROUND ARRAY

SUMMARY CALORIMETERS

Calorimeters can be classified into:

Electromagnetic Calorimeters,

to measure electrons and photons through their EM interactions.

Hadron Calorimeters,

Used to measure hadrons through their strong and EM interactions.

The construction can be classified into:

Homogeneous Calorimeters,

that are built of only one type of material that performs both tasks, energy degradation and signal generation.

Sampling Calorimeters,

that consist of alternating layers of an absorber, a dense material used to degrade the energy of the incident particle, and an active medium that provides the detectable signal.

OVERVIEW

- I. Detectors for Particle Physics
- II. Interaction with Matter
- **III.** Calorimeters
- V. Tracking Detectors
 - Gas detectors
 - Semiconductor trackers
- VI. Examples from the real life

Thursday

Wednesday