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Text:

At  the  Faculty  of  Mathematics  and  Natural  Sciences,  Department  of  Physics,  is  a  joint

appointment  with  the  German  Electron  Synchrotron  (DESY)  a

W3-­S-­Chair  of  "Theoretical  Particle  ─  development  of  theories  beyond  the

Standard  Model"

to  be  filled  as  soon  as  possible.

DESY  is  one  of  the  leading  centers  for  Astroparticle  and  Particle  Physics.  The  research

program  of  particle  physics  includes  a  strong  involvement  in  the  LHC  experiments  and

basic  research  in  the  field  of  theoretical  particle  in  the  Standard  Model  and  possible

extensions.  The  Institute  of  Physics,  Humboldt  University  is  also  involved  with  two

professorships  at  the  LHC  experiment  ATLAS.  The  research  interests  of  the  working  groups

in  the  field  of  theoretical  particle  physics  ranging  from  mathematical  physics  on  the

phenomenology  of  particle  physics  to  lattice  gauge  theory.

Candidates  /  students  should  be  expelled  through  excellence  with  international  recognition

in  the  field  of  theoretical  particle  physics  with  a  focus  on  the  development  of  models

beyond  the  Standard  Model.  Is  expected  to  close  cooperation  with  the  resident  at  the

Humboldt  University  workgroups.  In  addition  to  the  development  of  possible  standard

model  extensions  and  phenomenological  studies  of  experimental  verification  to  be  carried

out.  Place  special  emphasis  send  the  Higgs  physics.  It  is  expected  that  he  /  she  maintains

the  scientific  contacts  between  DESY  and  the  HU  and  active  in  the  DFG  Research  Training

Group  GK1504  "Mass,  Spectrum,  Symmetry:  Particle  Physics  in  the  Era  of  the  Large

Hadron  Collider"  cooperates.  He  /  she  should  be  at  all  levels  of  teaching  in  physics  at  the

HU  participate  (2  LVS)  and  will  have  the  opportunity  to  acquire  outside  of  a  creative

research  program.

Applicants  /  inside  must  meet  the  requirements  for  appointment  as  a  professor  /  to

professor  in  accordance  with  §  100  of  the  Berlin  Higher  Education  Act.

DESY  and  HU  aim  to  increase  the  proportion  of  women  in  research  and  teaching  and  calling

for  qualified  scientists  urgently  to  apply.  Severely  disabled  applicants  /  will  be  given
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Recap

!64

1. The same Fermi theory describes different phenomena 

2. The Fermi theory is an effective theory valid at low energy only 
(violation of unitarity).  

3. At higher energies, the 4-fermion contact interactions open up 
and are truly generated by the exchange of a massive gauge boson 

4. By analogy with QED, we understood that the weak interactions 
are associated with the invariance under non-abelian SU(2)xU(1) 
local symmetries 

5. SU(2)xU(1) is spontaneously broken to U(1)em by the vacuum 
expectation value of the Higgs field 

6. Masses for gauge bosons and fermions are generated by the 
Higgs vev
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Homework

1. Show that a single particle state in relativistic QM leads to causality violation  

2. Is pion decay mediated by weak interaction? Explain why  

3. Check the transformation law of a non-abelian gauge field: 

4. Check the transformation law of the non-abelian gauge field strength: 

5. Noether theorem: check that the Euler-Lagrange eqs imply that for a scalar theory 
invariant under U(1) continuous transformation the following current is conserved 

6. Prove the Goldstone theorem: for each global symmetry spontaneously broken, there 
exists a massless boson in the spectrum 

�(⇡� ! e�⌫̄e)

�(⇡� ! µ�⌫̄µ)
⇠ 10�4

Aµ ⇥ UAµU
�1 � i
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Fµ⌫ = @µA⌫ � @⌫Aµ + ig[Aµ, A⌫ ] ! UFµ⌫U
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✓
'

�L
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◆
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Spontaneous Symmetry Breaking
Symmetry of the Lagrangian Symmetry of the Vacuum

Higgs Doublet Vacuum Expectation Value

Gauge boson spectrum 

electrically charged bosons 

electrically neutral bosons

!66
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Interactions Fermions-Gauge Bosons
Gauge invariance says:

!67

with

Going to the mass eigenstate basis:

Zµ = cW 3
µ � sBµ

�µ = sW 3
µ + cBµ
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protected by U(1)em gauge invariance 
➾ no correctionnot protected by gauge invariance 

corrected by radiative corrections + new physics
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Rho parameter

Custodial Symmetry

!68
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Consequence of an approximate global  symmetry of the Higgs sector
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Custodial Symmetry

Higgs vev

The hypercharge gauge coupling and the Yukawa couplings break the custodial SU(2)V,  
which will generate a (small) deviation to ρ = 1  at the quantum level.

ρ = 1

unbroken symmetry in the broken phase

!69
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SM is a chiral theory

!-

e-"e
⇒⇒

Conservation of momentum and spin
imposes to have a RH e-

Weak decays proceed only w/ LH e-

So the amplitude is prop. to me

Weak interactions maximally violates P

TH: Yang&Lee ’56. EXP: Wu ‘57
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Extra phase-
space factor
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Fermion Masses

SM is a chiral theory (≠ QED that is vector-like) 

meēLeR + h.c. is not gauge invariant

The SM Lagrangian doesn’t not contain fermion mass terms 
fermion masses are emergent quantities 

that originate from interactions with Higgs vev

yij f̄LiHfRj =
yijvp

2
f̄LifRj +

yijp
2
hf̄LifRj
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Fermion Masses
In SM, the Yukawa interactions are the only source of the fermion masses

yij f̄LiHfRj =
yijvp

2
f̄LifRj +

yijp
2
hf̄LifRj

mass higgs-fermion interactions

both matrices are simultaneously diagonalizable  

no tree-level Flavor Changing Current induced by the Higgs

Not true anymore if the SM fermions mix with vector-like partners  or for non-SM Yukawa 

yij

✓
1 + cij

|H|2

f2

◆
f̄LiHfRj =

yijvp
2

✓
1 + cij

v
2

2f2

◆
f̄LifRj +

✓
1 + 3cij

v
2

2f2

◆
yijp
2
hf̄LifRj

(*) e.g. Buras, Grojean, Pokorski, Ziegler ’11 

(*) 

Look for SM forbidden Flavor Violating decays h � µτ and h � eτ

weak indirect constrained by flavor data (µ� eγ): BR<10% 
ATLAS and CMS have the sensitivity to set bounds O(1%) 
ILC/CLIC/FCC-ee can certainly do much better 

 Blankenburg, Ellis, Isidori ’12

Harnik et al ’12
Davidson, Verdier ’12

CMS-PAS-HIG-2014-005

(look also at t→hc ATLAS ’14)

http://arXiv.org/abs/1105.3725
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Fermion Masses
In SM, the Yukawa interactions are the only source of the fermion masses

yij f̄LiHfRj =
yijvp

2
f̄LifRj +

yijp
2
hf̄LifRj

mass higgs-fermion interactions

both matrices are simultaneously diagonalizable  

no tree-level Flavor Changing Current induced by the Higgs

Quark mixings
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Goldstone Theorem

QCD example:

sic!
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Goldstone Boson

U(1)
φ → eiαφ

φ = 1
√

2
(f + h(x)) eiθ(x)/f h → h

θ → θ + αf

non-linearly realizedU(1)

shift symmetry forbids any mass term 
for θ

L = ∂µφ†∂µφ − λ
(

∣

∣φ2
∣

∣

2
−
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2

)2

L =
1
2
∂µh∂µh +

1
2

(

f+h
f

)2

∂µθ∂µθ − λ
(

f2h2
+ fh3

+
1
4
h4

)

If the U(1) symmetry is gauged, the Goldstone boson is eaten and it 
becomes the longitudinal component of the massive gauge boson

!74

θ remains a massless field 
== Goldstone boson  ==    

To each continuous global symmetry spontaneously broken 
corresponds a massless field
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Example of Uneaten Goldstone Bosons

Let us assume that only SU(N-1) is gauged: then the Goldstone are uneaten.

Goldstone bosonsSU(N) → SU(N − 1) (N2
− 1) −

(

(N − 1)2 − 1
)

= 2N − 1

(N-1) complex,    ,  and 1 real,      , scalars
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(
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!75
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The longitudinal polarization of massive W, Z

symmetry breaking: new phase with more degrees of freedom

polarization vector grows with the energy

a massless particle is never at rest: always possible to distinguish   
(and eliminate!) the longitudinal polarization

c! c! c!

the longitudinal polarization is physical for a massive spin-1 particle

v! !0

(pictures: courtesy of G. Giudice)

!76

�� =

�
|⌃p|
M

,
E

M

⌃p

|⌃p|

⇥

mailto:gian.giudice@cern.ch?subject=Massless%20vs.%20massive%20spin-1:%20cartoons
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The longitudinal polarization of massive W, Z

symmetry breaking: new phase with more degrees of freedom

polarization vector grows with the energy

a massless particle is never at rest: always possible to distinguish   
(and eliminate!) the longitudinal polarization

c! c! c!

the longitudinal polarization is physical for a massive spin-1 particle

v! !0

(pictures: courtesy of G. Giudice)

!76

�� =

�
|⌃p|
M

,
E

M

⌃p

|⌃p|

⇥

3=2+1 Guralnik et al ’64

mailto:gian.giudice@cern.ch?subject=Massless%20vs.%20massive%20spin-1:%20cartoons
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a massive  
spin 1 particle has  

3 physical polarizations:
with

Longitudinal polarization of a massive spin 1

2 transverse: 

1 longitudinal:

( in  the R-ξ gauge, the time-like polarization (                                    ) is arbitrarily massive and decouple )

!77
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At high energy, the dominant degrees of freedom are WL

!78

The BEH mechanism: “VL=Goldstone bosons”

W+

t
b

�(t ! bWT ) =
g2

64⇡

2(m2
t �m2

W )
2

m3
t

�(t ! bWL) =
g2

64⇡

m2
t

m2
W

(m2
t �m2

W )
2

m3
t

at threshold (mt ~ mW) 
democratic decay 

at high energy (mt >> mW) 
WL dominates the decay

At high energy, the physics of the gauge bosons becomes simple
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At high energy, the dominant degrees of freedom are WL

!78

The BEH mechanism: “VL=Goldstone bosons”

LEP already established the BEH mechanism 
The pending question was: how is it realized? 

Via a fundamental EW doublet? A la technicolor?  
Is there a Higgs boson in addition to the 3 Goldstone bosons?

W+

t
b

�(t ! bWT ) =
g2

64⇡

2(m2
t �m2

W )
2

m3
t

�(t ! bWL) =
g2

64⇡

m2
t

m2
W

(m2
t �m2

W )
2

m3
t

at threshold (mt ~ mW) 
democratic decay 

at high energy (mt >> mW) 
WL dominates the decay

In other words, LEP established a simple description of the electroweak sector for E >> mW.

The goal of the LHC was/is to understand what comes next

mW ⌧ E ⌧ 4⇡v =
8⇡mW

g
This description is valid for

At high energy, the physics of the gauge bosons becomes simple

 ~~ why you should be stunned by this result: ~~

daughter

mother
daughter

g

we expect: 
(dimensional analysis) 

instead

� ⇠ g2 mmother

� / m3
mother means g / m like the Higgs 

couplings!
very efficient way to suck up energy from the mother particle

⌧ ⌧ ⌧naive
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At high energy, the dominant degrees of freedom are WL

!78

The BEH mechanism: “VL=Goldstone bosons”

LEP already established the BEH mechanism 
The pending question was: how is it realized? 

Via a fundamental EW doublet? A la technicolor?  
Is there a Higgs boson in addition to the 3 Goldstone bosons?

W+

t
b

�(t ! bWT ) =
g2

64⇡

2(m2
t �m2

W )
2

m3
t

�(t ! bWL) =
g2

64⇡

m2
t

m2
W

(m2
t �m2

W )
2

m3
t

at threshold (mt ~ mW) 
democratic decay 

at high energy (mt >> mW) 
WL dominates the decay

In other words, LEP established a simple description of the electroweak sector for E >> mW.

The goal of the LHC was/is to understand what comes next

mW ⌧ E ⌧ 4⇡v =
8⇡mW

g
This description is valid for

At high energy, the physics of the gauge bosons becomes simple

 ~~ why you should be stunned by this result: ~~

daughter

mother
daughter

g

we expect: 
(dimensional analysis) 

instead

� ⇠ g2 mmother

� / m3
mother means g / m like the Higgs 

couplings!
very efficient way to suck up energy from the mother particle

⌧ ⌧ ⌧naive
Goldstone equivalence theorem

W±L, ZL ≈ SO(4)/SO(3)
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Bad high-energy behavior for  
the scattering of the longitudinal 

polarizations

Extra degrees of freedom are needed to have a good description 
of the W and Z masses at higher energies

kµ

l�

p�

q�

WL

WL WL

WL

A = g2
E4

4M4
W

violations of perturbative unitarity around E ~ M/√g (actually M/g)

Call for extra degrees of freedom

A = �µ� (k)�
⇥
�(l)g

2 (2⇥µ⇤⇥⇥⌅ � ⇥µ⇥⇥⇤⌅ � ⇥µ⌅⇥⇥⇤) �
⇤
�(p)�

⌅
� (q)
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NO LOSE THEOREM

numerically: E ~ 3 TeV       the LHC was sure to discover something!

�
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++

MW/√(g/4π)~500GeV or MW/(g/4π)~3TeV? 
Lewellyn Smith ‘73 
Dicus, Mathur ‘73 

Cornwall, Levin, Tiktopoulos ’73

!80

W+ W+

W-W-

W+ W+

W-W-

γ, Z0

W-

W+ W+

W-

γ, Z0

impossible to further cancel the amplitude 
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http://inspirebeta.net/record/83747
http://inspirebeta.net/record/334983
http://inspirebeta.net/record/89348
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What is the SM Higgs?
A single scalar degree of freedom that couples to the mass of the particles 

‘a’, ‘b’ and ‘c’ are arbitrary free couplings

growth cancelled for  
a = 1 

restoration of 
perturbative unitarity

A =
1

v2

�
s� a2s2

s�m2
h

⇥

h
W+ W+

W- W-
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LEWSB = m2
WW+

µ W+
µ
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h2
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�m  ̄L R
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h

v
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++

Lee, Quigg, Thacker ’77

The Higgs boson unitarizes the W scattering  
(if its mass is below  ~ 1 TeV)
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What is the SM Higgs?

http://inspirebeta.net/record/119348
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b a

a

For b = a2: perturbative unitarity in inelastic channels WW � hh

‘a’, ‘b’ and ‘c’ are arbitrary free couplings

For a=1: perturbative unitarity in elastic channels WW � WW

Contino, Grojean, Moretti, Piccinini, Rattazzi  ’10Cornwall, Levin, Tiktopoulos  ’73

What is the Higgs the name of?

LEWSB = m2
WW+

µ W+
µ

✓
1 + 2a
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v
+ b

h2

v2

◆
�m  ̄L R

✓
1 + c

h

v

◆
A single scalar degree of freedom that couples to the mass of the particles 
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For b = a2: perturbative unitarity in inelastic channels WW � hh

‘a’, ‘b’ and ‘c’ are arbitrary free couplings

For a=1: perturbative unitarity in elastic channels WW � WW

a c

For ac=1: perturbative unitarity in inelastic WW � ψ ψ 
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Higgs couplings  
are proportional  

to the masses of the particles

Higgs
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“It has to do with the EWSB”

Already first data gave evidence of:

True in the SM:

Scaling                         follows naturally if 
the new boson is part of the sector that 
breaks the EW symmetry 

It does not necessarily imply that the new 
boson is part of an SU(2)L doublet

coupling ∝ mass

Ex: composite NG boson in TC
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Higgs boson at the LHC
producing a Higgs boson is a rare phenomenon 

since its interactions with particles are proportional to masses 
and ordinary matter is made of light elementary particles

t t

h

probability ~ 1

but no top quark at our disposal

From top quarks
e e

h

probability ~ 10-11

From electrons

!84

NB: the proton is not an elementary particle,  
its mass doesn’t measure its interaction with the Higgs substance
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Higgs boson at the LHC
Difficult task 

Homer Simpson’s principle of life: 

If something’s hard to do, is it worth doing?

!85

Homer Simpson has a famous quote: 

 

If something’s hard to do, then it’s not  

worth doing. 

 

 

 

My version: 

 

If something’s hard to measure, then it’s worth measuring at a 

100 TeV collider! 

 

Nobel Prize® and the Nobel Prize® medal design mark 
are registrated trademarks of the Nobel Foundation

8  OCTOBER 2013

Scientific Background on the Nobel Prize in Physics 2013

T H E B E H-M E C H A N I S M,

I N T E R AC T I O N S W I T H S H O R T R A N G E F O RC E S

A N D

S C A L A R PA R T I C L E S 

Compiled by the Class for Physics of the Royal Swedish Academy of Sciences

THE ROYAL SWEDISH ACADEMY OF SCIENCES has as its aim to promote the sciences and strengthen their influence in society.

BOX 50005 (LILLA FRESCATIVÄGEN 4 A), SE-104 05 STOCKHOLM, SWEDEN 
TEL +46 8 673 95 00, INFO@KVA.SE � HTTP://KVA.SE
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Higgs boson at the LHC
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H

The LHC has produced 105 Higgs bosons  
out of 1016 pp collisions

!86

Higgs boson at the LHC

σ ~ 10 pb ⇔ 105 events for L=10 fb-1

Higgs production Higgs decay
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SM Higgs @ LHC
The production of a Higgs is wiped out by QCD background 

4. SM Higgs production at the LHC
Physics at the LHC: some generalities

LHC: pp collider

√
s=7+7=14 TeV⇒

√
seff∼

√
s/3 ∼ 5 TeV

L∼10 fb−1 first years and 100 fb−1 later

• Huge cross sections for QCD processes.
• Small cross sections for EW Higgs signal.

S/B >∼ 1010 ⇒ a needle in a haystack!

• Need some strong selection criteria:
Trigger: get rid of uninteresting events...

Select clean channels: H → γγ,VV → ℓ

Use different kinematic features for Higgs

Combine different decay/production channels

Have a precise knowledge of S and B rates.

• Gigantic experimental (+theoretical) efforts!
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ISSCSMB ’08, Mugla, 10–18/09/08 Higgs Physics – A. Djouadi – p.20/47

at 
least
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of 
magn
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de

only 1 out of 100 billions events  
are “interesting” 

(for comparison, Shakespeare’s 43 works  
contain only 884,429 words in total)
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C8
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on

LH
C1

4
furthermore many of the 

background events furiously look 
like signal events
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... like finding the paper you 
are looking for in (108 copies of) 

John Ellis’ office
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3. Higgs production at LHC: main processes

Production mechanisms Cross sections at the LHC

There are also subleading processes, gg → HH, etc...

ISSCSMB ’08, Mugla, 10–18/09/08 Higgs Physics – A. Djouadi – p.23/47

Higgs-strahlung

3. Higgs production at LHC: main processes

Production mechanisms Cross sections at the LHC

There are also subleading processes, gg → HH, etc...

ISSCSMB ’08, Mugla, 10–18/09/08 Higgs Physics – A. Djouadi – p.23/47

Vector boson fusion

QQ associated  
production

3. Higgs production at LHC: main processes

Production mechanisms Cross sections at the LHC

There are also subleading processes, gg → HH, etc...
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∝1/s: Tevatron, LHC forward jet tagging 
central jet veto  

 small hadronic activity

Gluon fusion

3. Higgs production at LHC: main processes

Production mechanisms Cross sections at the LHC

There are also subleading processes, gg → HH, etc...
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single final state 
large NLO enhancement

3. Higgs production at LHC: main processes

Production mechanisms Cross sections at the LHC

There are also subleading processes, gg → HH, etc...

ISSCSMB ’08, Mugla, 10–18/09/08 Higgs Physics – A. Djouadi – p.23/47

LHC

(SM) Higgs Production @ the LHC

!88

more about Higgs physics 
see A. Raspereza’s lectures
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Appendix III
SM Lagrangian
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374 APPENDIX D. FEYNMAN RULES FOR THE STANDARD MODEL

and the fields transform as

q → e−iTaαa

q δq = −iT aαaq

Ga
µT

a → UGa
µT

aU−1 −
i

g
∂µUU−1 δGa

µ = −
1

g
∂µα

a + fabcαbGc
µ (D.5)

where the second column is for infinitesimal transformations. With these definitions one
can verify that the covariant derivative transforms like the field itself,

δ(Dµq) = −i T aαa(Dµq) (D.6)

ensuring the gauge invariance of the Lagrangian.

D.2.2 Gauge Group SU(2)L

This is similar to the previous case. We have

W a
µν = ∂µW

a
ν − ∂νW

a
µ + gϵabcW b

µW
c
ν , a = 1, . . . , 3 (D.7)

where, for the fundamental representation of SU(2)L we have T a = σa/2 and ϵabc is the
completely anti-symmetric tensor in 3 dimensions. The covariant derivative for any field
ψL transforming non-trivially under this group is,

DµψL =
(
∂µ − i g W a

µT
a
)
ψL (D.8)

D.2.3 Gauge Group U(1)Y

In this case the group is abelian and we have

Bµν = ∂µBν − ∂νBµ (D.9)

with the covariant derivative given by

DµψR =
(
∂µ + i g′ Y Bµ

)
ψR (D.10)

where Y is the hypercharge of the field. Notice the different sign convention between
Eq. (D.8) and Eq. (D.9). This is to have the usual definition1

Q = T3 + Y . (D.12)

It is useful to write the covariant derivative in terms of the mass eigenstates Aµ and
Zµ. These are defined by the relations,

{
W 3

µ = Zµ cos θW −Aµ sin θW

Bµ = Zµ sin θW +Aµ cos θW
,

{
Zµ = W 3

µ cos θW +Bµ sin θW

Aµ = −W 3
µ sin θW +Bµ cos θW

. (D.13)

1For this to be consistent one must also have, under hypercharge transformations, for a field of hyper-
charge Y ,

ψ′ = e+iY αY ψ, B′

µ = Bµ −
1
g′
∂µαY . (D.11)

This is important when finding the ghost interactions. It would have been possible to have a minus sign
in Eq. (D.10), with a definition θW → θW + π. This would also mean reversing the sign in the exponent
of the hypercharge transformation in Eq. (D.11) maintaining the similarity with Eq. (D.5).
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in Eq. (D.10), with a definition θW → θW + π. This would also mean reversing the sign in the exponent
of the hypercharge transformation in Eq. (D.11) maintaining the similarity with Eq. (D.5).
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can verify that the covariant derivative transforms like the field itself,
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Pauli matrices L ! e�iTa↵a

 L

which for
{γµ, γν} = 2gµν , (5.3)

gives the Klein-Gordon equation.
In other words, if we can construct objects γµ which satisfy the algebra

of Eq. 5.3, known as Clifford algebra, then every solution ψ(x⃗, t) of the Dirac
equation, will also be a solution of the Klein-Gordon equation.

The objects γµ are anti-commuting and they cannot be just numbers.
They have to be matrices. The first dimensionality for which we can find
four non-commuting matrices γ0, γ1, γ2, γ3 is four. In the following we shall
construct the so called “gamma-matrices” in four dimensions.

5.1 Mathematical interlude

It is useful to review here the properties of the 2 × 2 Pauli matrices, which
we shall use as building blocks for constructing γ-matrices by taking their
Kronecker product.

5.1.1 Pauli matrices and their properties

The Pauli matrices are,

σ1 =

(

0 1
1 0

)

, σ2 = −i

(

0 1
−1 0

)

, σ3 =

(

1 0
0 −1

)

. (5.4)

The Pauli matrices satisfy the following commutation and anti-commutation
relations,

[σi, σj ] = 2iϵijkσk (ϵ123 = 1), (5.5)

and
{σi, σj} = 2δijI2×2. (5.6)

Adding the two equations together, we find that the product of two Pauli
matrices is,

σiσj = δijI2×2 + iϵijkσk. (5.7)

For example,
σ2

i = I2×2, σ1σ2 = iσ3, σ3σ2 = −iσ1, . . . (5.8)

The determinant and trace of Pauli matrices are,

det (σi) = −1, (5.9)
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Feynman Rules for the Standard

Model

D.1 Introduction

To do actual calculations it is very important to have all the Feynman rules with consistent
conventions. In this Appendix we will give the complete Feynman rules for the Standard
Model in the general Rξ gauge.

D.2 The Standard Model

One of the most difficult problems in having a consistent set of of Feynman rules are the
conventions. We give here those that are important for building the SM. We will separate
them by gauge group.

D.2.1 Gauge Group SU(3)c

Here the important conventions are for the field strengths and the covariant derivatives.
We have

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gfabcGb

µG
c
ν , a = 1, . . . , 8 (D.1)

where fabc are the group structure constants, satisfying

[
T a, T b

]
= ifabcT c (D.2)

and T a are the generators of the group. The covariant derivative of a (quark) field q in
some representation T a of the gauge group is given by

Dµq =
(
∂µ − i g Ga

µT
a
)
q (D.3)

In QCD the quarks are in the fundamental representation and T a = λa/2 where λa are
the Gell-Mann matrices. A gauge transformation is given by a matrix

U = e−iTaαa

(D.4)
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and the fields transform as
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where the second column is for infinitesimal transformations. With these definitions one
can verify that the covariant derivative transforms like the field itself,

δ(Dµq) = −i T aαa(Dµq) (D.6)

ensuring the gauge invariance of the Lagrangian.

D.2.2 Gauge Group SU(2)L

This is similar to the previous case. We have

W a
µν = ∂µW

a
ν − ∂νW

a
µ + gϵabcW b

µW
c
ν , a = 1, . . . , 3 (D.7)

where, for the fundamental representation of SU(2)L we have T a = σa/2 and ϵabc is the
completely anti-symmetric tensor in 3 dimensions. The covariant derivative for any field
ψL transforming non-trivially under this group is,

DµψL =
(
∂µ − i g W a

µT
a
)
ψL (D.8)

D.2.3 Gauge Group U(1)Y

In this case the group is abelian and we have

Bµν = ∂µBν − ∂νBµ (D.9)

with the covariant derivative given by

DµψR =
(
∂µ + i g′ Y Bµ

)
ψR (D.10)

where Y is the hypercharge of the field. Notice the different sign convention between
Eq. (D.8) and Eq. (D.9). This is to have the usual definition1

Q = T3 + Y . (D.12)

It is useful to write the covariant derivative in terms of the mass eigenstates Aµ and
Zµ. These are defined by the relations,

{
W 3

µ = Zµ cos θW −Aµ sin θW

Bµ = Zµ sin θW +Aµ cos θW
,

{
Zµ = W 3

µ cos θW +Bµ sin θW

Aµ = −W 3
µ sin θW +Bµ cos θW

. (D.13)

1For this to be consistent one must also have, under hypercharge transformations, for a field of hyper-
charge Y ,

ψ′ = e+iY αY ψ, B′

µ = Bµ −
1
g′
∂µαY . (D.11)

This is important when finding the ghost interactions. It would have been possible to have a minus sign
in Eq. (D.10), with a definition θW → θW + π. This would also mean reversing the sign in the exponent
of the hypercharge transformation in Eq. (D.11) maintaining the similarity with Eq. (D.5).
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D.2.1 Gauge Group SU(3)c

Here the important conventions are for the field strengths and the covariant derivatives.
We have

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gfabcGb

µG
c
ν , a = 1, . . . , 8 (D.1)

where fabc are the group structure constants, satisfying

[
T a, T b

]
= ifabcT c (D.2)

and T a are the generators of the group. The covariant derivative of a (quark) field q in
some representation T a of the gauge group is given by

Dµq =
(
∂µ − i g Ga

µT
a
)
q (D.3)

In QCD the quarks are in the fundamental representation and T a = λa/2 where λa are
the Gell-Mann matrices. A gauge transformation is given by a matrix

U = e−iTaαa

(D.4)
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The Gell-Mann Matrices

• The 8 gluon states can be regarded as 3 × 3matrices in “color-space”. These
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• The Gell-Mann matrices will appear in the quark-gluon vertex factor for QCD.

• The Gell-Mann matrices λα are the SU(3) counterparts of the Pauli matrices

σi for SU(2).
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q=(q1,q2,q3)  (the three color degrees of freedom)

 (3×3)

=(uL,dL)  or (  L ,eL)⌫ Lacts on the two components of a doublet

SM gauge symmetries explicitly 
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and the fields transform as

q → e−iTaαa

q δq = −iT aαaq

Ga
µT

a → UGa
µT

aU−1 −
i

g
∂µUU−1 δGa

µ = −
1

g
∂µα

a + fabcαbGc
µ (D.5)

where the second column is for infinitesimal transformations. With these definitions one
can verify that the covariant derivative transforms like the field itself,

δ(Dµq) = −i T aαa(Dµq) (D.6)

ensuring the gauge invariance of the Lagrangian.

D.2.2 Gauge Group SU(2)L

This is similar to the previous case. We have

W a
µν = ∂µW

a
ν − ∂νW

a
µ + gϵabcW b

µW
c
ν , a = 1, . . . , 3 (D.7)

where, for the fundamental representation of SU(2)L we have T a = σa/2 and ϵabc is the
completely anti-symmetric tensor in 3 dimensions. The covariant derivative for any field
ψL transforming non-trivially under this group is,

DµψL =
(
∂µ − i g W a

µT
a
)
ψL (D.8)

D.2.3 Gauge Group U(1)Y

In this case the group is abelian and we have

Bµν = ∂µBν − ∂νBµ (D.9)

with the covariant derivative given by

DµψR =
(
∂µ + i g′ Y Bµ

)
ψR (D.10)

where Y is the hypercharge of the field. Notice the different sign convention between
Eq. (D.8) and Eq. (D.9). This is to have the usual definition1

Q = T3 + Y . (D.12)

It is useful to write the covariant derivative in terms of the mass eigenstates Aµ and
Zµ. These are defined by the relations,

{
W 3

µ = Zµ cos θW −Aµ sin θW

Bµ = Zµ sin θW +Aµ cos θW
,

{
Zµ = W 3

µ cos θW +Bµ sin θW

Aµ = −W 3
µ sin θW +Bµ cos θW

. (D.13)

1For this to be consistent one must also have, under hypercharge transformations, for a field of hyper-
charge Y ,

ψ′ = e+iY αY ψ, B′

µ = Bµ −
1
g′
∂µαY . (D.11)

This is important when finding the ghost interactions. It would have been possible to have a minus sign
in Eq. (D.10), with a definition θW → θW + π. This would also mean reversing the sign in the exponent
of the hypercharge transformation in Eq. (D.11) maintaining the similarity with Eq. (D.5).
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where fabc are the group structure constants, satisfying

[
T a, T b

]
= ifabcT c (D.2)

and T a are the generators of the group. The covariant derivative of a (quark) field q in
some representation T a of the gauge group is given by

Dµq =
(
∂µ − i g Ga

µT
a
)
q (D.3)

In QCD the quarks are in the fundamental representation and T a = λa/2 where λa are
the Gell-Mann matrices. A gauge transformation is given by a matrix

U = e−iTaαa

(D.4)
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To do actual calculations it is very important to have all the Feynman rules with consistent
conventions. In this Appendix we will give the complete Feynman rules for the Standard
Model in the general Rξ gauge.

D.2 The Standard Model

One of the most difficult problems in having a consistent set of of Feynman rules are the
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and the fields transform as

q → e−iTaαa

q δq = −iT aαaq

Ga
µT

a → UGa
µT

aU−1 −
i

g
∂µUU−1 δGa

µ = −
1

g
∂µα

a + fabcαbGc
µ (D.5)

where the second column is for infinitesimal transformations. With these definitions one
can verify that the covariant derivative transforms like the field itself,

δ(Dµq) = −i T aαa(Dµq) (D.6)

ensuring the gauge invariance of the Lagrangian.

D.2.2 Gauge Group SU(2)L

This is similar to the previous case. We have

W a
µν = ∂µW

a
ν − ∂νW

a
µ + gϵabcW b

µW
c
ν , a = 1, . . . , 3 (D.7)

where, for the fundamental representation of SU(2)L we have T a = σa/2 and ϵabc is the
completely anti-symmetric tensor in 3 dimensions. The covariant derivative for any field
ψL transforming non-trivially under this group is,

DµψL =
(
∂µ − i g W a

µT
a
)
ψL (D.8)

D.2.3 Gauge Group U(1)Y

In this case the group is abelian and we have

Bµν = ∂µBν − ∂νBµ (D.9)

with the covariant derivative given by

DµψR =
(
∂µ + i g′ Y Bµ

)
ψR (D.10)

where Y is the hypercharge of the field. Notice the different sign convention between
Eq. (D.8) and Eq. (D.9). This is to have the usual definition1

Q = T3 + Y . (D.12)

It is useful to write the covariant derivative in terms of the mass eigenstates Aµ and
Zµ. These are defined by the relations,

{
W 3

µ = Zµ cos θW −Aµ sin θW

Bµ = Zµ sin θW +Aµ cos θW
,

{
Zµ = W 3

µ cos θW +Bµ sin θW

Aµ = −W 3
µ sin θW +Bµ cos θW

. (D.13)

1For this to be consistent one must also have, under hypercharge transformations, for a field of hyper-
charge Y ,

ψ′ = e+iY αY ψ, B′

µ = Bµ −
1
g′
∂µαY . (D.11)

This is important when finding the ghost interactions. It would have been possible to have a minus sign
in Eq. (D.10), with a definition θW → θW + π. This would also mean reversing the sign in the exponent
of the hypercharge transformation in Eq. (D.11) maintaining the similarity with Eq. (D.5).
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SM gauge symmetries explicitly 
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Field SU(3) SU(2)L T 3 Y
2 Q = T 3 + Y

2

ga
µ (gluons) 8 1 0 0 0

(W±
µ , W 0

µ) 1 3 (±1, 0) 0 (±1, 0)

B0
µ 1 1 0 0 0

QL =

(

uL

dL

)

3 2

(

1
2

−1
2

)

1
6

(

2
3

−1
3

)

uR 3 1 0 2
3

2
3

dR 3 1 0 −1
3 −1

3

EL =

(

νL

eL

)

1 2

(

1
2

−1
2

)

−1
2

(

0

−1

)

eR 1 1 0 −1 −1

Φ =

(

φ+

φ0

)

1 2

(

1
2

−1
2

)

1
2

(

1

0

)

Φc =

(

φ0

φ−

)

1 2

(

1
2

−1
2

)

−1
2

(

0

−1

)

Table 1: Charges of Standard Model fields.

interaction:

∆L = ytQ
†
LΦctR + c.c. =

yt√
2
(t†L b†L)

(

v + h

0

)

tR + c.c. (48)

= mt(t
†
RtL + t†LtR)

(

1 +
h

v

)

= mt t̄t

(

1 +
h

v

)

(49)

where mt = ytv/
√

2 is the mass of the t quark.

The mass of the charged leptons follows in the same manner, yeE
†
LΦeR + c.c., and

interactions with the Higgs boson result. In all cased the Feynman diagram for Higgs
boson interactions with the fermions at leading order is

hf̄f : i
mf

v
. (50)

We see from this discussion several important points. First, the single Higgs
boson of the Standard Model can give mass to all Standard Model states, even to
the neutrinos as we will see in the next lecture. It did not have to be that way. It
could have been that quantum numbers of the fermions did not enable just one Higgs

10

The SM particle content
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D.2.5 The Fermion Fields Lagrangian

Here we give the kinetic part and gauge interaction, leaving the Yukawa interaction for a
next section. We have

LFermion =
∑

quarks

iqγµDµq +
∑

ψL

iψLγ
µDµψL +

∑

ψR

iψRγ
µDµψR (D.20)

where the covariant derivatives are obtained with the rules in Eqs. (D.3), (D.14) and
(D.18).

D.2.6 The Higgs Lagrangian

In the SM we use an Higgs doublet with the following assignments,

Φ =

⎡

⎢⎣
φ+

v +H + iϕZ√
2

⎤

⎥⎦ (D.21)

The hypercharge of this doublet is 1/2 and therefore the covariant derivative reads

DµΦ =

[
∂µ − i

g
√
2

(
τ+W+

µ + τ−W−
µ

)
− i

g

2
τ3W

3
µ + i

g′

2
Bµ

]
Φ (D.22)

=

[
∂µ − i

g
√
2

(
τ+W+

µ τ
−W−

µ

)
+ ieQAµ − i

g

cos θW

(τ3
2

−Q sin2 θW
)
Zµ

]
Φ

The Higgs Lagrangian is then

LHiggs = (DµΦ)
†DµΦ+ µ2Φ†Φ− λ

(
Φ†Φ

)2
(D.23)

If we expand this Lagrangian we find the following terms

LHiggs = · · ·+
1

8
g2v2W 3

µW
µ3 +

1

8
g′2v2BµB

µ +
1

4
gg′v2W 3

µB
µ +

1

4
g2v2W+

µ W−µ

+
1

2
v ∂µϕZ

(
g′Bµ + gW 3

µ

)
+

i

2
gvW−

µ ∂
µϕ+ −

i

2
gvW+

µ ∂
µϕ− (D.24)

The first three terms give, after diagonalization, a massless field, the photon, and a massive
one, the Z, with the relations given in Eq. (D.13), while the fourth gives the mass to the
charged W±

µ boson. Using Eq. (D.13) we get,

LHiggs = · · ·+
1

2
M2

ZZµZ
µ +M2

WW+
µ W−µ

+MZZµ∂
µϕZ + iMW

(
W−

µ ∂
µϕ+ −W+

µ ∂
µϕ−

)
(D.25)

where

MW =
1

2
gv, MZ =

1

cos θW

1

2
gv =

1

cos θW
MW (D.26)

By looking at Eq. (D.25) we realize that besides finding a realistic spectra for the gauge
bosons, we also got a problem. In fact the terms in the last line are quadratic in the fields
and complicate the definition of the propagators. We now see how one can use the needed
gauge fixing to solve also this problem.
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Field ℓL ℓR νL uL dL uR dR φ+ φ0

T3 −1
2 0 1

2
1
2 −1

2 0 0 1
2 −1

2

Y −1
2 −1 −1

2
1
6

1
6

2
3 −1

3
1
2

1
2

Q −1 −1 0 2
3 −1

3
2
3 −1

3 1 0

Table D.1: Values of T f
3 , Q and Y for the SM particles.

For a field ψL, with hypercharge Y , we get,

DµψL =

[
∂µ − i

g
√
2

(
τ+W+

µ + τ−W−
µ

)
− i

g

2
τ3W

3
µ + ig′Y Bµ

]
ψL (D.14)

=

[
∂µ − i

g
√
2

(
τ+W+

µ + τ−W−
µ

)
+ ieQAµ − i

g

cos θW

(τ3
2

−Q sin2 θW
)
Zµ

]
ψL

where, as usual, τ± = (τ1 ± iτ2)/2 and the charge operator is defined by

Q =

⎡

⎣
1
2 + Y 0

0 −1
2 + Y

⎤

⎦ , (D.15)

and we have used the relations,

e = g sin θW = g′ cos θW , (D.16)

and the usual definition,

W±
µ =

W 1
µ ∓ iW 2

µ√
2

. (D.17)

For a singlet of SU(2)L, ψR we have,

DµψR =
[
∂µ + ig′Y Bµ

]
ψR

=

[
∂µ + ieQAµ + i

g

cos θW
Q sin2 θWZµ

]
ψR . (D.18)

We collect in Table D.1 the quantum number of the SM particles.

D.2.4 The Gauge Field Lagrangian

For completeness we write the gauge field Lagrangian. We have

Lgauge = −
1

4
Ga

µνG
aµν −

1

4
W a

µνW
aµν −

1

4
BµνB

µν (D.19)

where the field strengths are given in Eqs. (D.1), and (D.9).
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If we expand this Lagrangian we find the following terms
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1

8
g2v2W 3
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g′2v2BµB

µ +
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4
gg′v2W 3

µB
µ +

1

4
g2v2W+

µ W−µ

+
1

2
v ∂µϕZ

(
g′Bµ + gW 3

µ

)
+

i
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gvW−

µ ∂
µϕ+ −

i
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µϕ− (D.24)

The first three terms give, after diagonalization, a massless field, the photon, and a massive
one, the Z, with the relations given in Eq. (D.13), while the fourth gives the mass to the
charged W±
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By looking at Eq. (D.25) we realize that besides finding a realistic spectra for the gauge
bosons, we also got a problem. In fact the terms in the last line are quadratic in the fields
and complicate the definition of the propagators. We now see how one can use the needed
gauge fixing to solve also this problem.
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µW
µ3 +

1

8
g′2v2BµB

µ +
1

4
gg′v2W 3

µB
µ +

1

4
g2v2W+

µ W−µ

+
1

2
v ∂µϕZ

(
g′Bµ + gW 3

µ

)
+

i

2
gvW−

µ ∂
µϕ+ −

i

2
gvW+

µ ∂
µϕ− (D.24)

The first three terms give, after diagonalization, a massless field, the photon, and a massive
one, the Z, with the relations given in Eq. (D.13), while the fourth gives the mass to the
charged W±

µ boson. Using Eq. (D.13) we get,

LHiggs = · · ·+
1

2
M2

ZZµZ
µ +M2

WW+
µ W−µ

+MZZµ∂
µϕZ + iMW

(
W−

µ ∂
µϕ+ −W+

µ ∂
µϕ−

)
(D.25)

where

MW =
1

2
gv, MZ =

1

cos θW

1

2
gv =

1

cos θW
MW (D.26)

By looking at Eq. (D.25) we realize that besides finding a realistic spectra for the gauge
bosons, we also got a problem. In fact the terms in the last line are quadratic in the fields
and complicate the definition of the propagators. We now see how one can use the needed
gauge fixing to solve also this problem.

all fermions carrying a U(1)Y  charge 
i.e. all Standard Model fermions 

only left-handed 
fermions

describe massless gauge bosons

describe massless fermions and their 
interactions with gauge bosons
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D.2.7 The Yukawa Lagrangian

Now we have to spell out the interaction between the fermions and the Higgs doublet that
after spontaneous symmetry breaking gives masses to the elementary fermions. We have,

LYukawa =− Yl LΦ ℓR − Yd QΦ dR − YuQ Φ̃ uR + h.c. (D.27)

where sum is implied over generations, L (Q) are the lepton (quark) doublets and,

Φ̃ = iσ2Φ
∗ =

⎡

⎣
v +H − iϕZ√

2
−ϕ−

⎤

⎦ (D.28)

D.2.8 The Gauge Fixing

As it is well known, we have to gauge fix the gauge part of the Lagrangian to be able to
define the propagators. We will use a generalization of the class of Lorenz gauges, the
so-called Rξ gauges. With this choice the gauge fixing Lagrangian reads

LGF = −
1

2ξ
F 2
G −

1

2ξ
F 2
A −

1

2ξ
F 2
Z −

1

ξ
F−F+ (D.29)

where

F a
G =∂µGa

µ, FA = ∂µAµ, FZ = ∂µZµ − ξMZϕZ

F+ =∂µW+
µ − iξMWϕ

+, F− = ∂µW−
µ + iξMWϕ

− (D.30)

One can easily verify that with these definitions we cancel the quadratic terms in Eq. (D.25).

D.2.9 The Ghost Lagrangian

The last piece in writing the SM Lagrangian is the ghost Lagrangian. As it is well known,
this is given by the Fadeev-Popov prescription,

LGhost =
4∑

i=1

[
c+
∂(δF+)

∂αi
+ c−

∂(δF+)

∂αi
+ cZ

∂(δFZ )

∂αi
+ cA

∂(δFA)

∂αi

]
ci

+
8∑

a,b=1

ωa ∂(δF
a
G)

∂βb
ωb (D.31)

where we have denoted by ωa the ghosts associated with the SU(3)c transformations
defined by,

U = e−iTaβa

, a = 1, . . . , 8 (D.32)

and by c±, cA, cZ the electroweak ghosts associated with the gauge transformations,

U = e−iTaαa

, a = 1, . . . , 3, U = eiY α
4

(D.33)

gives mass to EW 
gauge bosons

gives mass to fermions

: covariant derivative of the Higgs

responsible for 
electroweak 
symmetry 
breaking!H charged under SU(2) ×U(1)Y

3 massive gauge bosons 
W+ W- Z0

1 massless photon �
SU(3)⇥ SU(2)L ⇥ U(1)Y �! SU(3)⇥ U(1)em

8 massless 
gluons

8 massless 
gluons

remaining unbroken symmetry
The W and Z bosons interact with the Higgs medium, the γ doesn’t.

The SM Lagrangian
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Field ℓL ℓR νL uL dL uR dR φ+ φ0

T3 −1
2 0 1

2
1
2 −1

2 0 0 1
2 −1

2

Y −1
2 −1 −1

2
1
6

1
6

2
3 −1

3
1
2

1
2

Q −1 −1 0 2
3 −1

3
2
3 −1

3 1 0

Table D.1: Values of T f
3 , Q and Y for the SM particles.

For a field ψL, with hypercharge Y , we get,

DµψL =

[
∂µ − i

g
√
2

(
τ+W+

µ + τ−W−
µ

)
− i

g

2
τ3W

3
µ + ig′Y Bµ

]
ψL (D.14)

=

[
∂µ − i

g
√
2

(
τ+W+

µ + τ−W−
µ

)
+ ieQAµ − i

g

cos θW

(τ3
2

−Q sin2 θW
)
Zµ

]
ψL

where, as usual, τ± = (τ1 ± iτ2)/2 and the charge operator is defined by

Q =

⎡

⎣
1
2 + Y 0

0 −1
2 + Y

⎤

⎦ , (D.15)

and we have used the relations,

e = g sin θW = g′ cos θW , (D.16)

and the usual definition,

W±
µ =

W 1
µ ∓ iW 2

µ√
2

. (D.17)

For a singlet of SU(2)L, ψR we have,

DµψR =
[
∂µ + ig′Y Bµ

]
ψR

=

[
∂µ + ieQAµ + i

g

cos θW
Q sin2 θWZµ

]
ψR . (D.18)

We collect in Table D.1 the quantum number of the SM particles.

D.2.4 The Gauge Field Lagrangian

For completeness we write the gauge field Lagrangian. We have

Lgauge = −
1

4
Ga

µνG
aµν −

1

4
W a

µνW
aµν −

1

4
BµνB

µν (D.19)

where the field strengths are given in Eqs. (D.1), and (D.9).
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D.3 The Feynman Rules for QCD

We give separately the Feynman Rules for QCD and the electroweak part of the Standard
Model.

D.3.1 Propagators

−iδab

[
gµν

k2 + iϵ
− (1− ξ)

kµkν
(k2)2

]
(D.39)µ, a ν, b

g

δab
i

k2 + iϵ
(D.40)

ω
a b

D.3.2 Triple Gauge Interactions

gfabc[ gµν(p1 − p2)ρ + gνρ(p2 − p3)µ

+gρµ(p3 − p1)ν ]

p1 + p2 + p3 = 0
(D.41)

µ, a ν, b

ρ, c

p1

p2

p3

D.3.3 Quartic Gauge Interactions

ii) Vértice quártico dos bosões de gauge

−ig2
[

feabfecd(gµρgνσ − gµσgνρ)

+feacfedb(gµσgρν − gµνgρσ)

+feadfebc(gµνgρσ − gµρgνσ)
]

p1 + p2 + p3 + p4 = 0

(D.42)
µ, a ν, b

ρ, cσ, d

p1 p2

p3p4

D.3.4 Fermion Gauge Interactions

ig(γµ)βαT
a
ij (D.43)

µ, a

α, jβ, i
p1

p2

p3
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ig(γµ)βαT
a
ij (D.43)

µ, a

α, jβ, i
p1

p2

p3

D.4. THE FEYNMAN RULES FOR THE ELECTROWEAK THEORY 381

D.4.2 Triple Gauge Interactions

−ie [gαβ(p − k)µ + gβµ(k − q)α + gµα(q − p)β] (D.52)
p q

k

W−
α

W+
β

Aµ

ig cos θW [gαβ(p − k)µ + gβµ(k − q)α + gµα(q − p)β] (D.53)
p q

k

W−
α

W+
β

Zµ

D.4.3 Quartic Gauge Interactions

−ie2 [2gαβgµµ − gαµgβν − gανgβµ] (D.54)

W+
α

Aµ

W−
β

Aν

−ig2 cos2 θW [2gαβgµν − gαµgβν − gανgβµ] (D.55)

W+
α

Zµ

W−
β

Zν

ieg cos θW [2gαβgµν − gαµgβν − gανgβµ] (D.56)

W+
α

Aµ

W−
β

Zν

ig2 [2gαµgβν − gαβgµν − gανgβµ] (D.57)

W+
α W−

β

W+
µ W−

ν
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and the fields transform as

q → e−iTaαa

q δq = −iT aαaq

Ga
µT

a → UGa
µT

aU−1 −
i

g
∂µUU−1 δGa

µ = −
1

g
∂µα

a + fabcαbGc
µ (D.5)

where the second column is for infinitesimal transformations. With these definitions one
can verify that the covariant derivative transforms like the field itself,

δ(Dµq) = −i T aαa(Dµq) (D.6)

ensuring the gauge invariance of the Lagrangian.

D.2.2 Gauge Group SU(2)L

This is similar to the previous case. We have

W a
µν = ∂µW

a
ν − ∂νW

a
µ + gϵabcW b

µW
c
ν , a = 1, . . . , 3 (D.7)

where, for the fundamental representation of SU(2)L we have T a = σa/2 and ϵabc is the
completely anti-symmetric tensor in 3 dimensions. The covariant derivative for any field
ψL transforming non-trivially under this group is,

DµψL =
(
∂µ − i g W a

µT
a
)
ψL (D.8)

D.2.3 Gauge Group U(1)Y

In this case the group is abelian and we have

Bµν = ∂µBν − ∂νBµ (D.9)

with the covariant derivative given by

DµψR =
(
∂µ + i g′ Y Bµ

)
ψR (D.10)

where Y is the hypercharge of the field. Notice the different sign convention between
Eq. (D.8) and Eq. (D.9). This is to have the usual definition1

Q = T3 + Y . (D.12)

It is useful to write the covariant derivative in terms of the mass eigenstates Aµ and
Zµ. These are defined by the relations,

{
W 3

µ = Zµ cos θW −Aµ sin θW

Bµ = Zµ sin θW +Aµ cos θW
,

{
Zµ = W 3

µ cos θW +Bµ sin θW

Aµ = −W 3
µ sin θW +Bµ cos θW

. (D.13)

1For this to be consistent one must also have, under hypercharge transformations, for a field of hyper-
charge Y ,

ψ′ = e+iY αY ψ, B′

µ = Bµ −
1
g′
∂µαY . (D.11)

This is important when finding the ghost interactions. It would have been possible to have a minus sign
in Eq. (D.10), with a definition θW → θW + π. This would also mean reversing the sign in the exponent
of the hypercharge transformation in Eq. (D.11) maintaining the similarity with Eq. (D.5).

in mass eigenstate basis

three gauge 
boson vertex

four gauge boson 
vertex

no such 
interactions 
 for photon!
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Field ℓL ℓR νL uL dL uR dR φ+ φ0

T3 −1
2 0 1

2
1
2 −1

2 0 0 1
2 −1

2

Y −1
2 −1 −1

2
1
6

1
6

2
3 −1

3
1
2

1
2

Q −1 −1 0 2
3 −1

3
2
3 −1

3 1 0

Table D.1: Values of T f
3 , Q and Y for the SM particles.

For a field ψL, with hypercharge Y , we get,

DµψL =

[
∂µ − i

g
√
2

(
τ+W+

µ + τ−W−
µ

)
− i

g

2
τ3W

3
µ + ig′Y Bµ

]
ψL (D.14)

=

[
∂µ − i

g
√
2

(
τ+W+

µ + τ−W−
µ

)
+ ieQAµ − i

g

cos θW

(τ3
2

−Q sin2 θW
)
Zµ

]
ψL

where, as usual, τ± = (τ1 ± iτ2)/2 and the charge operator is defined by

Q =

⎡

⎣
1
2 + Y 0

0 −1
2 + Y

⎤

⎦ , (D.15)

and we have used the relations,

e = g sin θW = g′ cos θW , (D.16)

and the usual definition,

W±
µ =

W 1
µ ∓ iW 2

µ√
2

. (D.17)

For a singlet of SU(2)L, ψR we have,

DµψR =
[
∂µ + ig′Y Bµ

]
ψR

=

[
∂µ + ieQAµ + i

g

cos θW
Q sin2 θWZµ

]
ψR . (D.18)

We collect in Table D.1 the quantum number of the SM particles.

D.2.4 The Gauge Field Lagrangian

For completeness we write the gauge field Lagrangian. We have

Lgauge = −
1

4
Ga

µνG
aµν −

1

4
W a

µνW
aµν −

1

4
BµνB

µν (D.19)

where the field strengths are given in Eqs. (D.1), and (D.9).

cos ✓W = g/
p

g2 + g02
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µ = Bµ −
1
g′
∂µαY . (D.11)

This is important when finding the ghost interactions. It would have been possible to have a minus sign
in Eq. (D.10), with a definition θW → θW + π. This would also mean reversing the sign in the exponent
of the hypercharge transformation in Eq. (D.11) maintaining the similarity with Eq. (D.5).

Appendix D

Feynman Rules for the Standard

Model

D.1 Introduction

To do actual calculations it is very important to have all the Feynman rules with consistent
conventions. In this Appendix we will give the complete Feynman rules for the Standard
Model in the general Rξ gauge.

D.2 The Standard Model

One of the most difficult problems in having a consistent set of of Feynman rules are the
conventions. We give here those that are important for building the SM. We will separate
them by gauge group.

D.2.1 Gauge Group SU(3)c

Here the important conventions are for the field strengths and the covariant derivatives.
We have

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gfabcGb

µG
c
ν , a = 1, . . . , 8 (D.1)

where fabc are the group structure constants, satisfying

[
T a, T b

]
= ifabcT c (D.2)

and T a are the generators of the group. The covariant derivative of a (quark) field q in
some representation T a of the gauge group is given by

Dµq =
(
∂µ − i g Ga

µT
a
)
q (D.3)

In QCD the quarks are in the fundamental representation and T a = λa/2 where λa are
the Gell-Mann matrices. A gauge transformation is given by a matrix

U = e−iTaαa

(D.4)
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Model in the general Rξ gauge.

D.2 The Standard Model

One of the most difficult problems in having a consistent set of of Feynman rules are the
conventions. We give here those that are important for building the SM. We will separate
them by gauge group.

D.2.1 Gauge Group SU(3)c

Here the important conventions are for the field strengths and the covariant derivatives.
We have

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gfabcGb

µG
c
ν , a = 1, . . . , 8 (D.1)

where fabc are the group structure constants, satisfying

[
T a, T b

]
= ifabcT c (D.2)

and T a are the generators of the group. The covariant derivative of a (quark) field q in
some representation T a of the gauge group is given by

Dµq =
(
∂µ − i g Ga

µT
a
)
q (D.3)

In QCD the quarks are in the fundamental representation and T a = λa/2 where λa are
the Gell-Mann matrices. A gauge transformation is given by a matrix

U = e−iTaαa

(D.4)
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and the fields transform as

q → e−iTaαa

q δq = −iT aαaq

Ga
µT

a → UGa
µT

aU−1 −
i

g
∂µUU−1 δGa

µ = −
1

g
∂µα

a + fabcαbGc
µ (D.5)

where the second column is for infinitesimal transformations. With these definitions one
can verify that the covariant derivative transforms like the field itself,

δ(Dµq) = −i T aαa(Dµq) (D.6)

ensuring the gauge invariance of the Lagrangian.

D.2.2 Gauge Group SU(2)L

This is similar to the previous case. We have

W a
µν = ∂µW

a
ν − ∂νW

a
µ + gϵabcW b

µW
c
ν , a = 1, . . . , 3 (D.7)

where, for the fundamental representation of SU(2)L we have T a = σa/2 and ϵabc is the
completely anti-symmetric tensor in 3 dimensions. The covariant derivative for any field
ψL transforming non-trivially under this group is,

DµψL =
(
∂µ − i g W a

µT
a
)
ψL (D.8)

D.2.3 Gauge Group U(1)Y

In this case the group is abelian and we have

Bµν = ∂µBν − ∂νBµ (D.9)

with the covariant derivative given by

DµψR =
(
∂µ + i g′ Y Bµ

)
ψR (D.10)

where Y is the hypercharge of the field. Notice the different sign convention between
Eq. (D.8) and Eq. (D.9). This is to have the usual definition1

Q = T3 + Y . (D.12)

It is useful to write the covariant derivative in terms of the mass eigenstates Aµ and
Zµ. These are defined by the relations,

{
W 3

µ = Zµ cos θW −Aµ sin θW

Bµ = Zµ sin θW +Aµ cos θW
,

{
Zµ = W 3

µ cos θW +Bµ sin θW

Aµ = −W 3
µ sin θW +Bµ cos θW

. (D.13)

1For this to be consistent one must also have, under hypercharge transformations, for a field of hyper-
charge Y ,

ψ′ = e+iY αY ψ, B′

µ = Bµ −
1
g′
∂µαY . (D.11)

This is important when finding the ghost interactions. It would have been possible to have a minus sign
in Eq. (D.10), with a definition θW → θW + π. This would also mean reversing the sign in the exponent
of the hypercharge transformation in Eq. (D.11) maintaining the similarity with Eq. (D.5).
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Evolution of coupling constants

Classical physics: the forces depend on distances

Quantum physics : the charges depend on distances

QED: virtual particles screen  
    the electric charge: α    when d 

QCD: virtual particles (quarks and 
*gluons*) screen the strong charge:         
                αs      when d 

‘asymptotic freedom’
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more about QCD/jets 
see M. Diehl’s lectures



Christophe Grojean Intro HEP-Theory DESY, July/August 2018

SM β fcts
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A single form of matter 
A single fundamental interaction

Grand Unified Theories

!98
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SU(5) GUT: Gauge Group Structure
SU(3)cxSU(2)LxU(1)Y: SM Matter Content 
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How can you ever remember all these numbers?
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the SM matter fits nicely into 

representations of SU(5), 

 even more nicely into SO(10) 

unification baryon-lepton
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SU(5) GUT: low energy consistency condition
1

�i(MZ)
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1
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� bi
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i = SU(3), SU(2), U(1)
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b3, b2, b1

experimental inputs

predicted by the matter content

(�GUT ,MGUT )3 equations & 2 unknowns

one consistency relation for unification

!100
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sin2 �W � 0.207 not so bad...

more about GUT, see F. Bruemmer’s lectures
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self-consistent computation:  MGUT < MPl safe to neglect quantum gravity effects 
 αGUT << 1 perturbative computation

more about GUT, see F. Bruemmer’s lectures
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Proton Decay

938.2720813(58) MeV

why is the proton stable? 
electric charge conservation? 
baryon number conservation?

8 

Shocking news from GUT: matter is unstable! 
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GUT:  τ p(p→ e+π 0 ) = MX

1015 GeV
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1031−32  yr

Exp:  τ p(p→ e+π 0 )> 8.2×1033  yr

in GUT, “matter” is unstable 
decay of proton mediated by 

new SU(5)/SO(10) gauge 
bosons

(G. Giudice SSLP’15)

other decay mode:

Michal Malinsky, IPNP Prague Portorož,  April 21 2017Uncertainties in proton lifetime estimates /many
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Sample of estimates

vi Baryon Number Violation

Figure 1-1. Evolution of the three gauge couplings ↵i with momentum Q: Standard Model (left panel)

and Minimal Supersymmetric Standard Model (right panel)

Y gauge boson that mediate proton decay, increase significantly with low energy SUSY (see right panel of
Fig. 1-1) [40].

Supersymmetric grand unified theories (SUSY GUTs) [41, 42, 43, 44, 45, 46, 47] are natural extensions
of the Standard Model that preserve the attractive features of GUTs noted above, such as quantization of
electric charge, and lead to reasonably precise unification of the three gauge couplings. They also explain the
existence of the weak scale, which is much smaller than the GUT scale, and provide a dark matter candidate
in the form of the lightest SUSY particle. Low energy SUSY brings in a new twist to proton decay, however,
as it predicts a new decay mode p ! ⌫K+ that would be mediated by the colored Higgsino [48],[49], the
GUT/SUSY partner of the Higgs doublets (see Fig. 1-2, right panel). The lifetime for this mode in minimal
renormalizable SUSY SU(5) is typically shorter than the current experimental lower limit quoted in Eq.
(1.1), provided that the SUSY particle masses are less than about 3 TeV, so that they are within reach of
the LHC. This is, however, not the case in fully realistic SUSY SU(5) models, as shall be explained below.
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Figure 1-2. Diagrams inducing proton decay in GUTs. p ! e+⇡0
mediated by X gauge boson (left) in

non-SUSY and SUSY GUTs, and p ! ⌫K+
generated by a d = 5 operator in SUSY GUTs. (right).

In order to evaluate the lifetimes for the p ! ⌫K+ and p ! e+⇡0 decay modes in SUSY SU(5) [50], a
symmetry breaking sector and a consistent Yukawa coupling sector must be specified. In SU(5), one family
of quarks and leptons is organized as {10 + 5 + 1}, where 10 � {Q, uc, ec}, 5 � {dc, L}, and 1 ⇠ ⌫c. SU(5)
contains 24 gauge bosons, 12 of which are the gluons, W±, Z0 and the photon, while the remaining 12 are the

Community Planning Study: Snowmass 2013
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Figure 1-2. Diagrams inducing proton decay in GUTs. p ! e+⇡0
mediated by X gauge boson (left) in

non-SUSY and SUSY GUTs, and p ! ⌫K+
generated by a d = 5 operator in SUSY GUTs. (right).

In order to evaluate the lifetimes for the p ! ⌫K+ and p ! e+⇡0 decay modes in SUSY SU(5) [50], a
symmetry breaking sector and a consistent Yukawa coupling sector must be specified. In SU(5), one family
of quarks and leptons is organized as {10 + 5 + 1}, where 10 � {Q, uc, ec}, 5 � {dc, L}, and 1 ⇠ ⌫c. SU(5)
contains 24 gauge bosons, 12 of which are the gluons, W±, Z0 and the photon, while the remaining 12 are the
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of baryon number violation that conserve (B + L)1 or violate only B (e.g. dinucleon decay). Studies along
these lines are an active area of inquiry within the Super-Kamiokande collaboration and a handful of first
results, all negative so far, are presented in talks, theses, or are being prepared for publication.
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Figure 1-4. Summary of lifetime limits for proton or bound neutron decay into antilepton plus meson;

the complete set of possible two-body decay modes that conserve B � L is listed. Experimental searches

were conducted by Super-K (dark blue gradient band with marker) and previous experiments: Soudan (pink

diamonds), Frejus (purple hexagons), Kamiokande (light blue ovals), and IMB (light green rectangles).

1.3.2 Proposed Proton Decay Search Experiments

There are a variety of proposals to continue the search for nucleon decay with a new generation of experiments.
Some of these proposals are inactive or discontinued, while others are being actively discussed in various
parts of the world. The proposed detectors can be categorized broadly in three distinctive technologies:

1 Decay modes with a final state neutrino, always unobserved, may be interpreted as conserving (B � L) or (B + L)
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