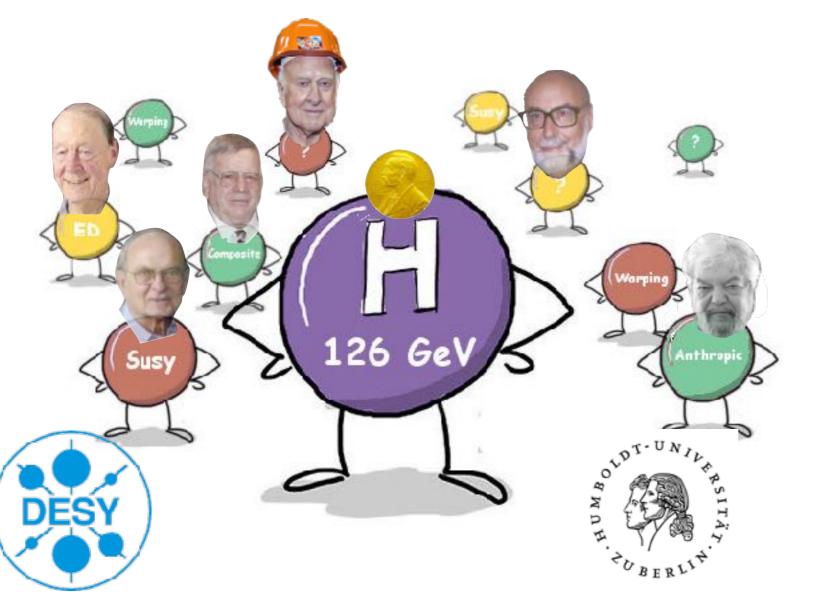
Introduction

HEP Theory

DESY summer student lectures 2018



Lectures 5+6/6

Christophe Grojean

DESY (Hamburg) Humboldt University (Berlin)

(christophe.grojean@desy.de)

Recap

- 1. The same Fermi theory describes different phenomena
- 2. The Fermi theory is an effective theory valid at low energy only (violation of unitarity).
- 3. At higher energies, the 4-fermion contact interactions open up and are truly generated by the exchange of a massive gauge boson
- 4. By analogy with QED, we understood that the weak interactions are associated with the invariance under non-abelian $SU(2)\times U(1)$ local symmetries
- 5. SU(2)xU(1) is spontaneously broken to $U(1)_{em}$ by the vacuum expectation value of the Higgs field
- 6. Masses for gauge bosons and fermions are generated by the Higgs vev

Homework

- 1. Show that a single particle state in relativistic QM leads to causality violation
- 2. Is pion decay mediated by weak interaction? Explain why $\frac{\Gamma(\pi^- \to e^- \bar{\nu}_e)}{\Gamma(\pi^- \to \mu^- \bar{\nu}_e)} \sim 10^{-4}$
- 3. Check the transformation law of a non-abelian gauge field: $A_{\mu} \to U A_{\mu} U^{-1} \frac{\imath}{a} U \partial_{\mu} U^{-1}$
- 4. Check the transformation law of the non-abelian gauge field strength:

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + ig[A_{\mu}, A_{\nu}] \to UF_{\mu\nu}U^{-1}$$

5. Noether theorem: check that the Euler-Lagrange eqs imply that for a scalar theory invariant under U(1) continuous transformation the following current is conserved

$$\partial_{\mu} \left(\varphi \frac{\delta \mathcal{L}}{\delta \partial_{\mu} \varphi} \right) = 0$$

6. Prove the Goldstone theorem: for each global symmetry spontaneously broken, there exists a massless boson in the spectrum

Spontaneous Symmetry Breaking

Symmetry of the Lagrangian

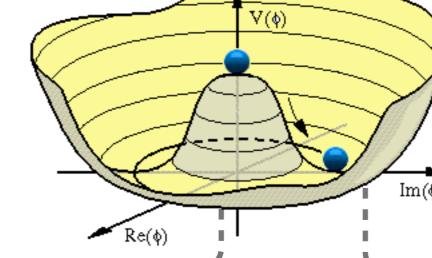
Symmetry of the Vacuum

$$SU(2)_L \times U(1)_Y$$

$$U(1)_{e.m.}$$

Higgs Doublet

$$H = \left(\begin{array}{c} h^+ \\ h^0 \end{array}\right)$$



$$\langle H \rangle = \begin{pmatrix} 0 \\ \frac{v}{\sqrt{2}} \end{pmatrix}$$
 with $v \approx 246 \text{ GeV}$

$$D_{\mu}H = \partial_{\mu}H - \frac{i}{2} \begin{pmatrix} gW_{\mu}^{3} + g'B_{\mu} & \sqrt{2}gW_{\mu}^{+} \\ \sqrt{2}gW_{\mu}^{-} & -gW_{\mu}^{3} + g'B_{\mu} \end{pmatrix} H \text{ with } W_{\mu}^{\pm} = \frac{1}{\sqrt{2}} \left(W_{\mu}^{1} \mp W_{\mu}^{2}\right)$$

$$|D_{\mu}H|^{2} = \frac{1}{4} g^{2} v^{2} W_{\mu}^{+} W^{-\mu} + \frac{1}{8} (W_{\mu}^{3} B_{\mu}) \begin{pmatrix} g^{2} v^{2} & -gg'v^{2} \\ -gg'v^{2} & g'^{2}v^{2} \end{pmatrix} \begin{pmatrix} W^{3\mu} \\ B^{\mu} \end{pmatrix}$$

Gauge boson spectrum

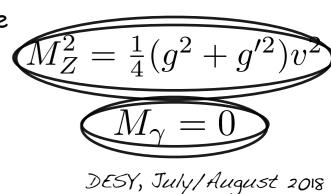
electrically charged bosons

$$M_W^2 = \frac{1}{4}g^2v^2$$

electrically neutral bosons (

$$Z_{\mu} = cW_{\mu}^3 - sB_{\mu} \qquad c = \frac{g}{\sqrt{g^2 + g'^2}} \qquad M_Z^2 = \frac{1}{4}(g^2 + g'^2)v^2$$

$$\gamma_{\mu} = sW_{\mu}^3 + cB_{\mu} \qquad s = \frac{g'}{\sqrt{g^2 + g'^2}} \qquad M_{\gamma} = 0$$
 Intro HEP-Theory 66



Interactions Fermions-Gauge Bosons

Gauge invariance says:

$$\mathcal{L} = gW_{\mu}^{3} \left(\sum_{i} T_{3Li} \ \bar{\psi}_{i} \bar{\sigma}^{\mu} \psi_{i} \right) + g' B_{\mu} \left(\sum_{i} y_{i} \ \bar{\psi}_{i} \bar{\sigma}^{\mu} \psi_{i} \right)$$

Going to the mass eigenstate basis:

$$Z_{\mu} = cW_{\mu}^3 - sB_{\mu} \qquad \text{with} \qquad c = \frac{g}{\sqrt{g^2 + g'^2}}$$

$$\gamma_{\mu} = sW_{\mu}^3 + cB_{\mu} \qquad s = \frac{g'}{\sqrt{g^2 + g'^2}}$$

$$Q = T_{3L} + Y$$

$$\mathcal{L} = \sqrt{g^2 + g'^2} Z_{\mu} \left(\sum_i (T_{3L\,i} - s^2 Q_i) \ \bar{\psi}_i \bar{\sigma}^{\mu} \psi_i \right) + \frac{gg'}{\sqrt{g^2 + g'^2}} \gamma_{\mu} \left(\sum_i Q_i \ \bar{\psi}_i \bar{\sigma}^{\mu} \psi_i \right)$$
protected by U(1)_{em} gauge invariance \rightarrow no correction

not protected by gauge invariance corrected by radiative corrections + new physics

electric charge

$$e = \frac{gg'}{\sqrt{g^2 + g'^2}} = sg = cg'$$
267 DESY, July/August 2018

Christophe Grojean

Custodial Symmetry

Rho parameter

$$\rho \equiv \frac{M_W^2}{M_Z^2 \cos^2 \theta_w} = \frac{\frac{1}{4}g^2 v^2}{\frac{1}{4}(g^2 + g'^2)v^2 \frac{g^2}{g^2 + g'^2}} = 1$$

Consequence of an approximate global symmetry of the Higgs sector

$$H=\left(egin{array}{c} h^+ \ h^0 \end{array}
ight)$$
 Higgs doublet = 4 real scalar fields

$$V(H) = \lambda \left(H^\dagger H - \frac{v^2}{2} \right)^2$$
 is invariant under the rotation of the four real components

$$SU(2)_R$$

$$\Phi^{\dagger}\Phi = H^{\dagger}H\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 $V(H) = \frac{\lambda}{4} \left(\operatorname{tr}\Phi^{\dagger}\Phi - v^2 \right)^2$

$$SU(2)_L \longrightarrow (i\sigma^2 H^* H) = \Phi$$

2x2 matrix

explicitly invariant under $SU(2)_L \times SU(2)_R$

Custodial Symmetry

Higgs vev

$$\langle H \rangle = \begin{pmatrix} 0 \\ \frac{v}{\sqrt{2}} \end{pmatrix} \qquad \langle \Phi \rangle = \frac{v}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$SU(2)_L \times SU(2)_R \to SU(2)_V$$

unbroken symmetry in the broken phase

 $(W_{\mu}^{1}, W_{\mu}^{2}, W_{\mu}^{3})$ transforms as a triplet

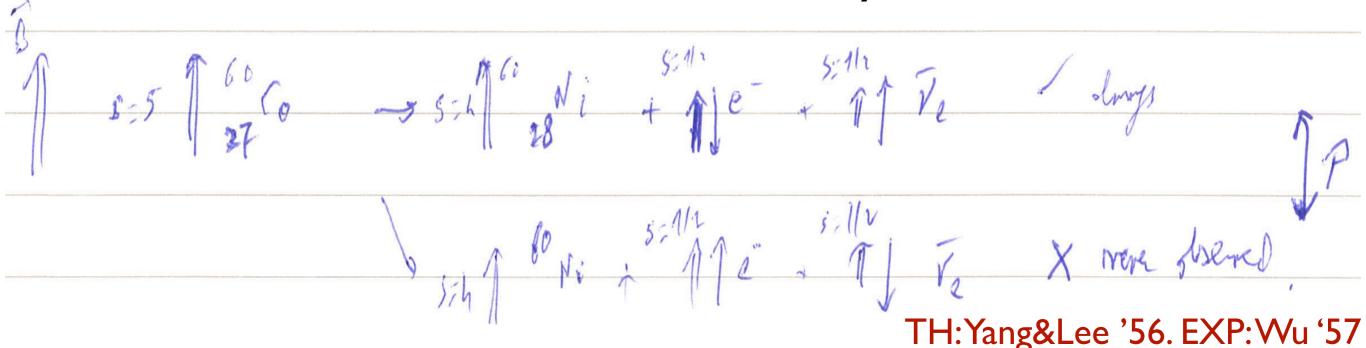
$$(Z_{\mu} \gamma_{\mu}) \begin{pmatrix} M_Z^2 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} Z^{\mu} \\ \gamma^{\mu} \end{pmatrix} = (W_{\mu}^3 B_{\mu}) \begin{pmatrix} c^2 M_Z^2 & -cs M_Z^2 \\ -cs M_Z^2 & s^2 M_Z^2 \end{pmatrix} \begin{pmatrix} W^{3 \mu} \\ B^{\mu} \end{pmatrix}$$

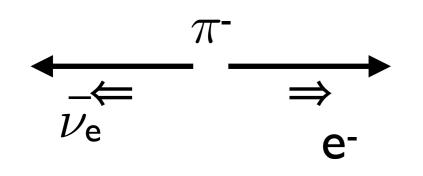
The $SU(2)_V$ symmetry imposes the same mass term for all W^i thus $c^2M_Z^2=M_W^2$ ρ = 1

The hypercharge gauge coupling and the Yukawa couplings break the custodial $SU(2)_{V}$ which will generate a (small) deviation to $\rho = 1$ at the quantum level.

SM is a chiral theory

Weak interactions maximally violates P





Conservation of momentum and spin imposes to have a RH e-

Weak decays proceed only w/ LH e-So the amplitude is prop. to me

$$\frac{\Gamma(\pi^- \to e^- \bar{\nu}_e)}{\Gamma(\pi^- \to \mu^- \bar{\nu}_\mu)} \propto \frac{m_e^2}{m_\mu^2} \sim 2 \times 10^{-5} \sim 10_{\rm obs}^{-4}$$
 Extra phasespace factor

Intro HEP-Theory

Fermion Masses

SM is a chiral theory (* QED that is vector-like)

 $m_e \bar{e}_L e_R + h.c.$ is not gauge invariant

The SM Lagrangian doesn't not contain fermion mass terms fermion masses are emergent quantities that originate from interactions with Higgs vev

$$y_{ij}\bar{f}_{L_i}Hf_{R_j} = \frac{y_{ij}v}{\sqrt{2}}\bar{f}_{L_i}f_{R_j} + \frac{y_{ij}}{\sqrt{2}}h\bar{f}_{L_i}f_{R_j}$$

Fermion Masses

In SM, the Yukawa interactions are the only source of the fermion masses

$$y_{ij}\bar{f}_{L_i}Hf_{R_j} = \frac{y_{ij}v}{\sqrt{2}}\bar{f}_{L_i}f_{R_j} + \frac{y_{ij}}{\sqrt{2}}h\bar{f}_{L_i}f_{R_j}$$
 higgs-fermion interactions

both matrices are simultaneously diagonalizable

no tree-level Flavor Changing Current induced by the Higgs

Not true anymore if the SM fermions mix with vector-like partners or for non-SM Yukawa

$$y_{ij} \left(1 + c_{ij} \frac{|H|^2}{f^2} \right) \bar{f}_{L_i} H f_{R_j} = \frac{y_{ij} v}{\sqrt{2}} \left(1 + c_{ij} \frac{v^2}{2f^2} \right) \bar{f}_{L_i} f_{R_j} + \left(1 + 3c_{ij} \frac{v^2}{2f^2} \right) \frac{y_{ij}}{\sqrt{2}} h \bar{f}_{L_i} f_{R_j}$$

Look for SM forbidden Flavor Violating decays $h \rightarrow \mu \tau$ and $h \rightarrow e \tau$ (look also at $t \rightarrow hc$ ATLAS '14)

- 0 weak indirect constrained by flavor data ($\mu\!\to e\gamma$): BR<10% o ATLAS and CMS have the sensitivity to set bounds O(1%)
- o ILC/CLIC/FCC-ee can certainly do much better

Blankenburg, Ellis, Isidori '12

Harnik et al '12 Davidson, Verdier '12 CMS-PAS-HIG-2014-005

(*) e.g. Buras, Grojean, Pokorski, Ziegler '11

Fermion Masses

In SM, the Yukawa interactions are the only source of the fermion masses

$$y_{ij}\bar{f}_{L_i}Hf_{R_j} = \frac{y_{ij}v}{\sqrt{2}}\bar{f}_{L_i}f_{R_j} + \frac{y_{ij}}{\sqrt{2}}h\bar{f}_{L_i}f_{R_j}$$
 higgs-fermion interaction

both matrices are simultaneously diagonalizable

no tree-level Flavor Changing Current induced by the Higgs

Quark mixings

$$\mathcal{L}_{Yuk} = \lambda_{ij}^L (\bar{L}_L^i \phi^c) l_R^j + \lambda_{ij}^U (\bar{Q}_{L,\alpha}^i \phi) u_{R,\alpha}^j + \lambda_{ij}^D (\bar{Q}_{L,\alpha}^i \phi^c) d_{R,\alpha}^j + cc$$

$$\mathcal{L}_{L}^{\dagger} \left(\frac{v}{\sqrt{2}} \lambda^{L} \right) \mathcal{L}_{R} = \begin{pmatrix} m_{e} & & \\ & m_{\mu} & \\ & & m_{\tau} \end{pmatrix} \qquad \mathcal{L}_{Yuk\,quad} = - \begin{pmatrix} \bar{e}_{L}, \bar{\mu}_{L}, \bar{\tau}_{L} \end{pmatrix} \begin{pmatrix} m_{e} & & \\ & m_{\mu} & \\ & & m_{\tau} \end{pmatrix} \begin{pmatrix} e_{R} \\ \mu_{R} \\ \tau_{R} \end{pmatrix}$$

$$\mathcal{U}_{L}^{\dagger} \left(\frac{-v}{\sqrt{2}} \lambda^{U} \right) \mathcal{U}_{R} = \begin{pmatrix} m_{u} & & \\ & m_{c} & \\ & & m_{t} \end{pmatrix} \qquad - \begin{pmatrix} \bar{u}_{L,\alpha}, \bar{c}_{L,\alpha}, \bar{t}_{L,\alpha} \end{pmatrix} \begin{pmatrix} m_{u} & & \\ & m_{c} & \\ & & m_{t} \end{pmatrix} \begin{pmatrix} u_{R,\alpha} \\ c_{R,\alpha} \\ t_{R,\alpha} \end{pmatrix} \qquad \mathcal{V}_{KM} = \mathcal{D}_{L}^{\dagger} \mathcal{U}_{L}$$

$$\mathcal{D}_{L}^{\dagger} \left(\frac{v}{\sqrt{2}} \lambda^{D} \right) \mathcal{D}_{R} = \begin{pmatrix} m_{d} & & \\ & m_{s} & \\ & & m_{b} \end{pmatrix} \begin{pmatrix} d_{R,\alpha} \\ s_{R,\alpha} \\ b_{R,\alpha} \end{pmatrix}$$

$$+ cc$$

Goldstone Theorem

Goldstone's theorem [edit]

Goldstone's theorem examines a generic continuous symmetry which is spontaneously broken; i.e., its currents are conserved, but the ground state is not invariant under the action of the corresponding charges. Then, necessarily, new massless (or light, if the symmetry is not exact) scalar particles appear in the spectrum of possible excitations. There is one scalar particle—called a Nambu—Goldstone boson—for each generator of the symmetry that is broken, i.e., that does not preserve the ground state. The Nambu—Goldstone mode is a long-wavelength fluctuation of the corresponding order parameter.

By virtue of their special properties in coupling to the vacuum of the respective symmetry-broken theory, vanishing momentum ("soft") Goldstone bosons involved in field-theoretic amplitudes make such amplitudes vanish ("Adler zeros").

In theories with gauge symmetry, the Goldstone bosons are "eaten" by the gauge bosons. The latter become massive and their new, longitudinal polarization is provided by the Goldstone boson.

QCD example:

For two light quarks, u and d, the symmetry of the QCD Lagrangian called *chiral symmetry*, and denoted as $U(2)_L \times U(2)_R$, can be decomposed into

$$SU(2)_L \times SU(2)_R \times U(1)_V \times U(1)_A$$
.

The quark condensate spontaneously breaks the $SU(2)_L \times SU(2)_R$ down to the diagonal vector subgroup $SU(2)_V$, known as isospin. The resulting effective theory of baryon bound states of QCD (which describes protons and neutrons), then, has mass terms for these, disallowed by the original linear realization of the chiral symmetry, but allowed by the nonlinear (spontaneously broken) realization thus achieved as a result of the strong interactions.^[4]

The Nambu-Goldstone bosons corresponding to the three broken generators are the three pions, charged and neutral. More precisely, because of small quark masses which make this chiral symmetry only approximate, the pions are **Pseudo-Goldstone bosons** instead, with a nonzero, but still atypically small mass, $m_{\pi} \approx \sqrt{\nu} \, m_{\rm q} \, / f_{\pi}$.

Goldstone Boson

$$\phi \to e^{i\alpha}\phi$$

$$\mathcal{L} = \partial_{\mu}\phi^{\dagger}\partial^{\mu}\phi - \lambda\left(\left|\phi^{2}\right|^{2} - \frac{f^{2}}{2}\right)^{2}$$

$$\phi = \frac{1}{\sqrt{2}} \left(f + h(x) \right) e^{i\theta(x)/f} \quad \begin{array}{c} h \to h \\ \theta \to \theta + \alpha f \end{array}$$

 $U(1)\,$ non-linearly realized shift symmetry forbids any mass term for θ

$$\mathcal{L} = \frac{1}{2}\partial_{\mu}h\partial^{\mu}h + \frac{1}{2}\left(\frac{f+h}{f}\right)^{2}\partial_{\mu}\theta\partial^{\mu}\theta - \lambda\left(f^{2}h^{2} + fh^{3} + \frac{1}{4}h^{4}\right)$$

θ remains a massless field == Goldstone boson ==

To each continuous global symmetry spontaneously broken corresponds a massless field

If the U(1) symmetry is gauged, the Goldstone boson is eaten and it becomes the longitudinal component of the massive gauge boson

Example of Uneaten Goldstone Bosons

$$SU(N) o SU(N-1)$$
 $(N^2-1)-((N-1)^2-1)=2N-1$ Goldstone bosons

$$\langle \phi \rangle = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ f \end{pmatrix}$$

$$\langle \phi \rangle = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ f \end{pmatrix} \qquad \phi = \exp \begin{pmatrix} \frac{i}{f} \begin{pmatrix} -\pi_0 & \pi_1 \\ \vdots \\ -\pi_0 & \pi_1 \\ \hline \pi_1^* & \dots & \pi_{N-1}^* & (N-1)\pi_0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 0 \\ \vdots \\ 0 \\ f \end{pmatrix}$$

$$\phi = e^{i\pi}\phi_0$$

(N-1) complex, $\vec{\pi}$, and 1 real, π_0 , scalars

Let us assume that only SU(N-1) is gauged: then the Goldstone are uneaten.

$$(SU(N-1))$$

$$\phi \to U_{N-1}\phi = U_{N-1}e^{i\pi}U_{N-1}^{\dagger}U_{N-1}\phi_0 = e^{iU_{N-1}\pi U_{N-1}^{\dagger}}\phi_0$$

$$\pi \to \left(\begin{array}{c|c} U_{N-1} & \\ \hline & 1 \end{array}\right) \left(\begin{array}{c|c} \pi_0 & \pi \\ \hline & \pi^{\dagger} & \pi_0 \end{array}\right) \left(\begin{array}{c|c} U_{N-1}^{\dagger} & \\ \hline & 1 \end{array}\right) = \left(\begin{array}{c|c} \pi_0 & U_{N-1}\pi \\ \hline & \pi^{\dagger}U_{N-1}^{\dagger} & \pi_0 \end{array}\right)$$

linear transformations

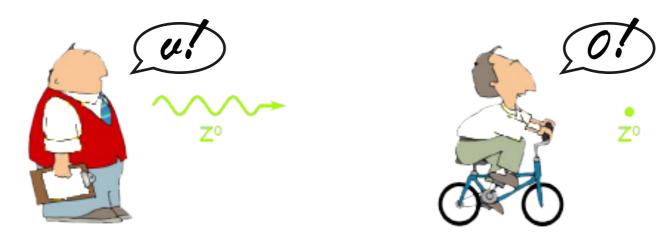
$$\overbrace{SU(N-1)}^{SU(N)}$$

$$SU(N) \qquad \phi \to \exp\left(i\left(\frac{\vec{\alpha}}{\vec{\alpha}^{\dagger}}\right)\right) \exp\left(i\left(\frac{\vec{\pi}}{\vec{\alpha}^{\dagger}}\right)\right) \exp\left(i\left(\frac{\vec{\pi}}{\vec{\alpha}^{\dagger}}\right)\right) \phi_0 \approx \exp\left(i\left(\frac{\vec{\pi}+\vec{\alpha}}{\vec{\alpha}^{\dagger}}\right)\right) \phi_0$$

non-linear transformations

The longitudinal polarization of massive W, Z

a massless particle is never at rest: always possible to distinguish (and eliminate!) the longitudinal polarization



the longitudinal polarization is physical for a massive spin-1 particle

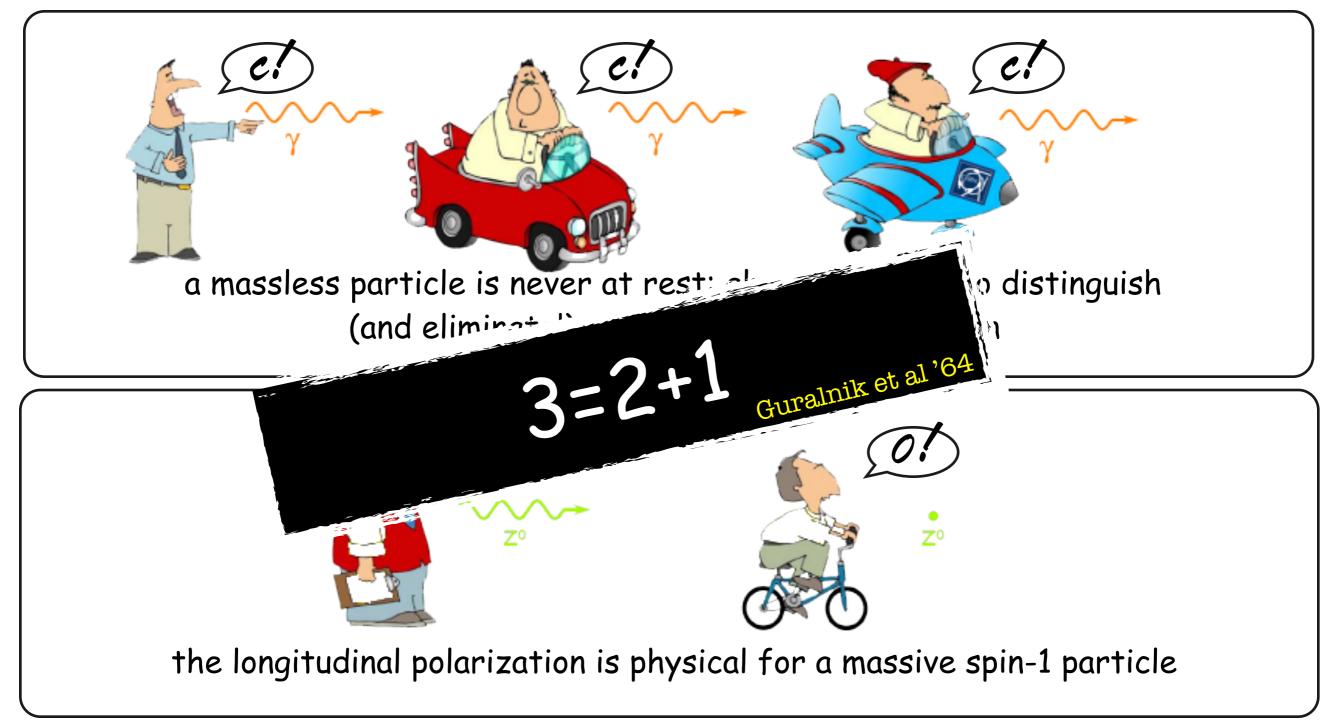
(pictures: courtesy of G. Giudice)

symmetry breaking: new phase with more degrees of freedom

$$\epsilon_{\parallel}=\left(rac{|ec{p}|}{M},rac{E}{M}rac{ec{p}}{|ec{p}|}
ight)$$
 polarization vector grows with the energy

Intro HEP-Theory

The longitudinal polarization of massive W, Z



(pictures: courtesy of G. Giudice)

symmetry breaking: new phase with more degrees of freedom

$$\epsilon_{\parallel}=\left(\frac{|\vec{p}|}{M},\frac{E}{M}\frac{\vec{p}}{|\vec{p}|}\right)$$
 polarization vector grows with the energy

Intro HEP-Theory

Longitudinal polarization of a massive spin 1

a massive
spin 1 particle has
3 physical polarizations:

$$A_{\mu} = \epsilon_{\mu} e^{ik_{\mu}x^{\mu}}$$

$$\epsilon^{\mu}\epsilon_{\mu} = -1 \quad k^{\mu}\epsilon_{\mu} = 0$$

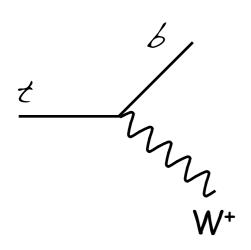
$$k^\mu=(E,0,0,k)$$
 with $k_\mu k^\mu=E^2-k^2=M^2$ 2 transverse:
$$\left\{\begin{array}{l} \epsilon_1^\mu=(0,1,0,0)\\ \epsilon_2^\mu=(0,0,1,0) \end{array}\right.$$

1 longitudinal:
$$\epsilon^\mu_\parallel=(rac{k}{M},0,0,rac{E}{M})pproxrac{k^\mu}{M}+\mathcal{O}(rac{E}{M})$$

(in the R- ξ gauge, the time-like polarization ($\epsilon^{\mu}\epsilon_{\mu}=1$ $k^{\mu}\epsilon_{\mu}=M$) is arbitrarily massive and decouple)

The BEH mechanism: "V_L=Goldstone bosons"

At high energy, the physics of the gauge bosons becomes simple



$$\Gamma(t \to bW_L) = \frac{g^2}{64\pi} \frac{m_t^2}{m_W^2} \frac{(m_t^2 - m_W^2)^2}{m_t^3}$$

$$\Gamma(t \to bW_T) = \frac{g^2}{64\pi} \frac{2(m_t^2 - m_W^2)^2}{m_t^3}$$

$$W^{\dagger}$$

$$\Gamma(t \to bW_T) = \frac{g^2}{64\pi} \frac{2(m_t^2 - m_W^2)^2}{m_t^3}$$

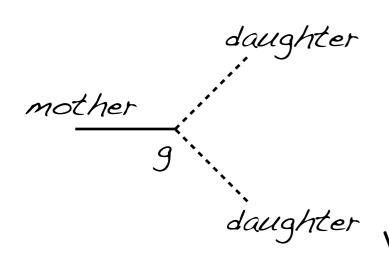
- \bigcirc at threshold ($m_{\ell} \sim m_W$) democratic decay
- \bigcirc at high energy ($m_{t} >> m_{W}$) W_L dominates the decay

At high energy, the dominant degrees of freedom are WL

The BEH mechanism: "V_L=Goldstone bosons"

At high energy, the physics of the gauge bosons becomes simple

~~ why you should be stunned by this result: ~~



we expect: (dimensional analysis)
$$\Gamma \sim g^2 \, m_{\rm mother}$$

instead
$$\Gamma \propto m_{
m mother}^3$$
 means $g \propto m$ like the Higgs couplings!

daughter very efficient way to suck up energy from the mother particle

$$\tau \ll \tau_{\rm naive}$$

LEP already established the BEH mechanism The pending question was: how is it realized? Via a fundamental EW doublet? A la technicolor? Is there a Higgs boson in addition to the 3 Goldstone bosons?

In other words, LEP established a simple description of the electroweak sector for $E \gg m_W$.

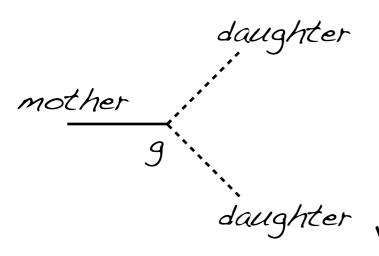
This description is valid for
$$m_W \ll E \ll 4\pi v = \frac{8\pi m_W}{g}$$

The goal of the LHC was/is to understand what comes next

The BEH mechanism: "V_L=Goldstone bosons"

At high energy, the physics of the gauge bosons becomes simple

~~ why you should be stunned by this result: ~~



we expect: (dimensional analysis)
$$\Gamma \sim g^2 \, m_{\rm mother}$$

instead $\Gamma \propto m_{\rm mother}^3$ means $g \propto m$ like the Higgs

couplings!

very efficient way to suck up energy from the mother particle

Goldstone equivalence theorem $W^{\pm}_{L}, Z_{L} \approx 50(4)/50(3)$

$$\tau \ll \tau_{\rm naive}$$

LEP already established the BEH mechanism The pending question was: how is it realized? Via a fundamental EW doublet? A la technicolor? Is there a Higgs boson in addition to the 3 Goldstone bosons?

In other words, LEP established a simple description of the electroweak sector for $E \gg m_W$.

This description is valid for
$$\ m_W \ll E \ll 4\pi v = \frac{8\pi m_W}{g}$$

The goal of the LHC was/is to understand what comes next

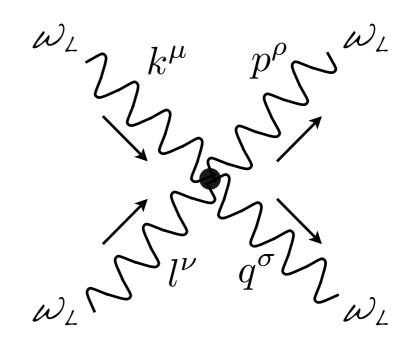
Call for extra degrees of freedom

NO LOSE THEOREM

Bad high-energy behavior for the scattering of the longitudinal polarizations

$$\mathcal{A} = \epsilon_{\parallel}^{\mu}(k)\epsilon_{\parallel}^{\nu}(l)g^{2} \left(2\eta_{\mu\rho}\eta_{\nu\sigma} - \eta_{\mu\nu}\eta_{\rho\sigma} - \eta_{\mu\sigma}\eta_{\nu\rho}\right)\epsilon_{\parallel}^{\rho}(p)\epsilon_{\parallel}^{\sigma}(q)$$

$$\mathcal{A} = g^2 \frac{E^4}{4M_W^4}$$

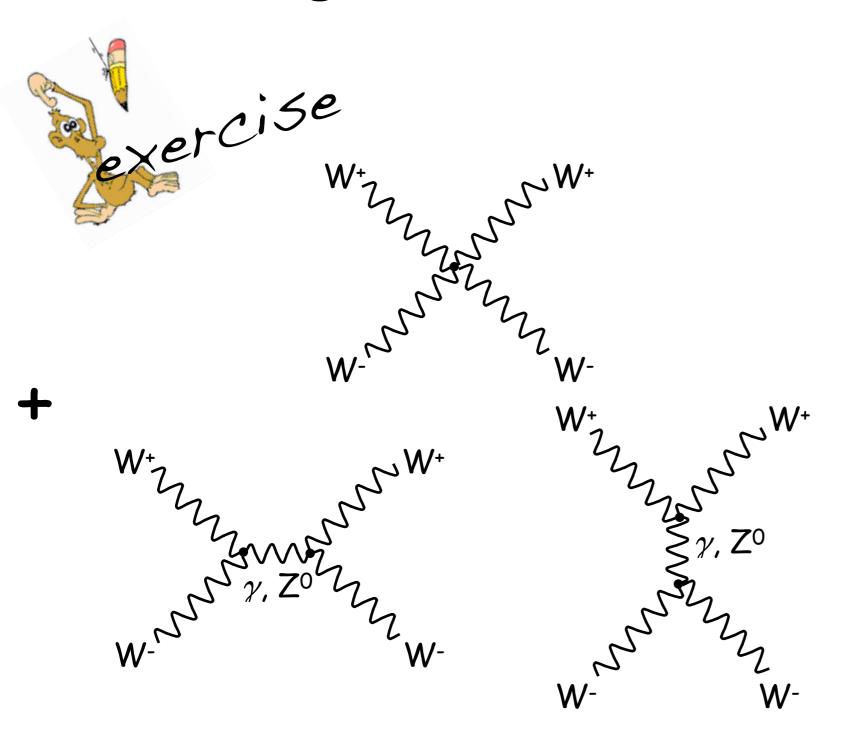


violations of perturbative unitarity around $E \sim M/Jg$ (actually M/g)

Extra degrees of freedom are needed to have a good description of the W and Z masses at higher energies

numerically: E ~ 3 TeV the LHC was sure to discover something!

$M_W/J(g/4\pi)\sim500GeV$ or $M_W/(g/4\pi)\sim3TeV$?



Lewellyn Smith '73 Dicus, Mathur '73 Cornwall, Levin, Tiktopoulos '73

$$\mathcal{A} = g^2 \left(\frac{E}{M_W}\right)^4$$

$$\mathcal{A} = -g^2 \left(\frac{E}{M_W}\right)^4$$

impossible to further cancel the amplitude
$$\mathcal{A}=g^2\left(\frac{E}{M_W}\right)^2$$
 without introducing new degrees of freedom

What is the SM Higgs?

A single scalar degree of freedom that couples to the mass of the particles

$$\mathcal{L}_{\text{EWSB}} = m_W^2 W_{\mu}^+ W_{\mu}^+ \left(1 + 2a \frac{h}{v} + b \frac{h^2}{v^2} \right) - m_{\psi} \bar{\psi}_L \psi_R \left(1 + c \frac{h}{v} \right)$$

'a', 'b' and 'c' are arbitrary free couplings

$$W^{-}$$
 W^{+}
 W^{+}
 W^{+}
 W^{+}
 W^{+}

$$\mathcal{A} = \frac{1}{v^2} \left(s - \frac{a^2 s^2}{s - m_h^2} \right)$$

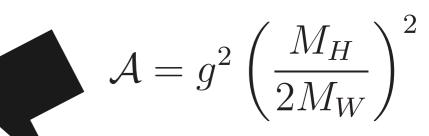
growth cancelled for a = 1 restoration of perturbative unitarity

What is the SM Higgs?

 $\mathcal{A}_{X_{1},X_{2}}^{W^{+}}$ $\mathcal{A}_{Y_{1},Z_{2}}^{W^{-}}$ $\mathcal{A}_{W^{-}}^{Z}$ $\mathcal{A}_{W^{-}}^{Z}$ $\mathcal{A}_{W^{-}}^{Z}$ $\mathcal{A}_{W^{-}}^{Z}$ $\mathcal{A}_{W^{-}}^{Z}$

 $\mathcal{A} = -g^2 \left(\frac{E}{M_W}\right)^2$

The Higgs boson unitarizes the W scattering (if its mass is below ~ 1 TeV)



Lee, Quigg, Thacker '77

What is the Higgs the name of?

A single scalar degree of freedom that couples to the mass of the particles

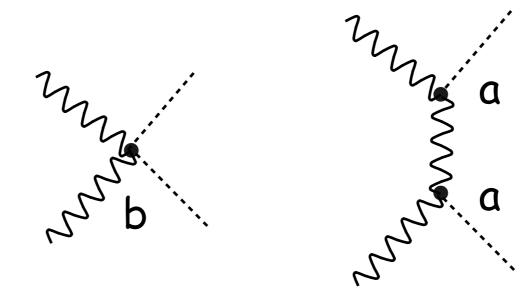
$$\mathcal{L}_{\text{\tiny EWSB}} = m_W^2 W_\mu^+ W_\mu^+ \left(1 + 2a\frac{h}{v} + b\frac{h^2}{v^2}\right) - m_\psi \bar{\psi}_L \psi_R \left(1 + c\frac{h}{v}\right)$$
 'a', 'b' and 'c' are arbitrary free couplings

For a=1: perturbative unitarity in elastic channels $WW \rightarrow WW$

For b = a^2 : perturbative unitarity in inelastic channels WW \rightarrow hh

Cornwall, Levin, Tiktopoulos '73

Contino, Grojean, Moretti, Piccinini, Rattazzi '10



What is the Higgs the name of?

A single scalar degree of freedom that couples to the mass of the particles

$$\mathcal{L}_{\text{\tiny EWSB}} = m_W^2 W_\mu^+ W_\mu^+ \left(1 + 2a\frac{h}{v} + b\frac{h^2}{v^2}\right) - m_\psi \bar{\psi}_L \psi_R \left(1 + c\frac{h}{v}\right)$$
 'a', 'b' and 'c' are arbitrary free couplings

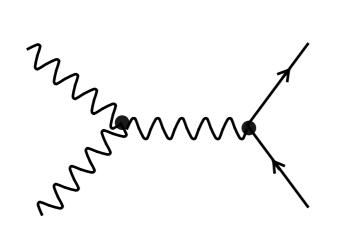
For a=1: perturbative unitarity in elastic channels $WW \rightarrow WW$

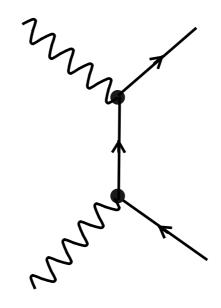
For b = a^2 : perturbative unitarity in inelastic channels WW \rightarrow hh

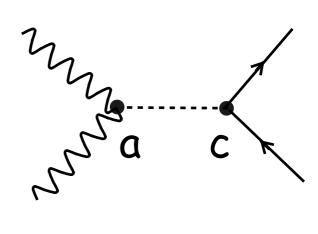
For ac=1: perturbative unitarity in inelastic WW $ightarrow \psi \ \psi$

Cornwall, Levin, Tiktopoulos '73

Contino, Grojean, Moretti, Piccinini, Rattazzi '10







What is the Higgs the name of?

A single scalar degree of freedom that couples to the mass of the particles

$$\mathcal{L}_{\text{\tiny EWSB}} = m_W^2 W_\mu^+ W_\mu^+ \left(1 + 2a\frac{h}{v} + b\frac{h^2}{v^2}\right) - m_\psi \bar{\psi}_L \psi_R \left(1 + c\frac{h}{v}\right)$$
 'a', 'b' and 'c' are arbitrary free couplings

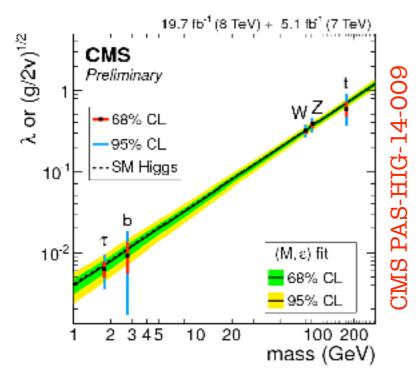
For a=1: perturbative unitarity in elastic channels $WW \rightarrow WW$

For b = a^2 : perturbative unitarity in inelastic channels WW \rightarrow hh

For ac=1: perturbative unitarity in inelastic WW $\rightarrow \psi \, \psi$

Cornwall, Levin, Tiktopoulos '73

Contino, Grojean, Moretti, Piccinini, Rattazzi '10

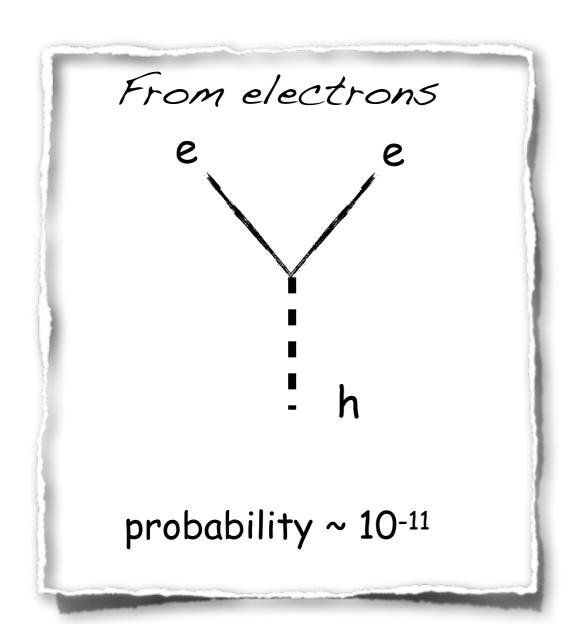


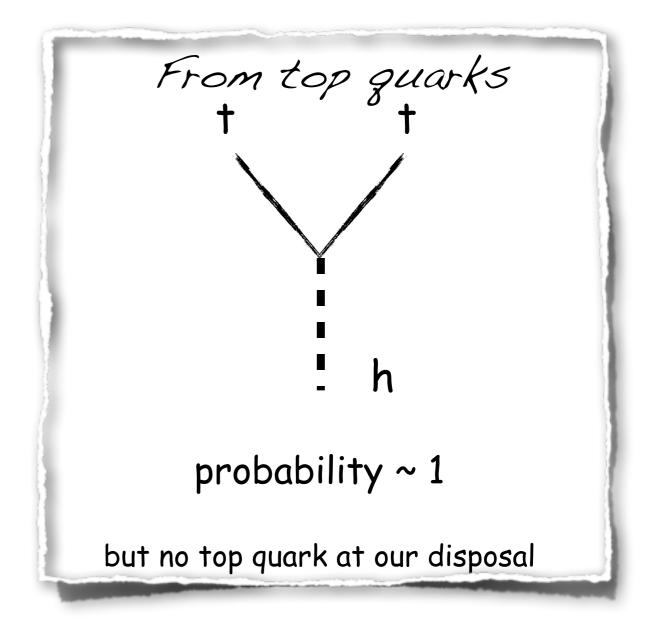
Higgs couplings
are proportional
to the masses of the particles

$$\lambda_{\psi} \propto \frac{m_{\psi}}{v} \,, \qquad \lambda_{V}^{2} \equiv \frac{g_{VVh}}{2v} \propto \frac{m_{V}^{2}}{v^{2}}$$

producing a Higgs boson is a rare phenomenon since its interactions with particles are proportional to masses and ordinary matter is made of light elementary particles

NB: the proton is not an elementary particle, its mass doesn't measure its interaction with the Higgs substance

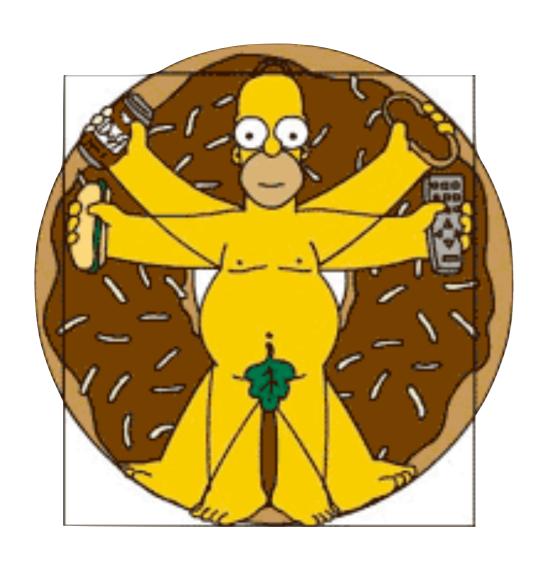


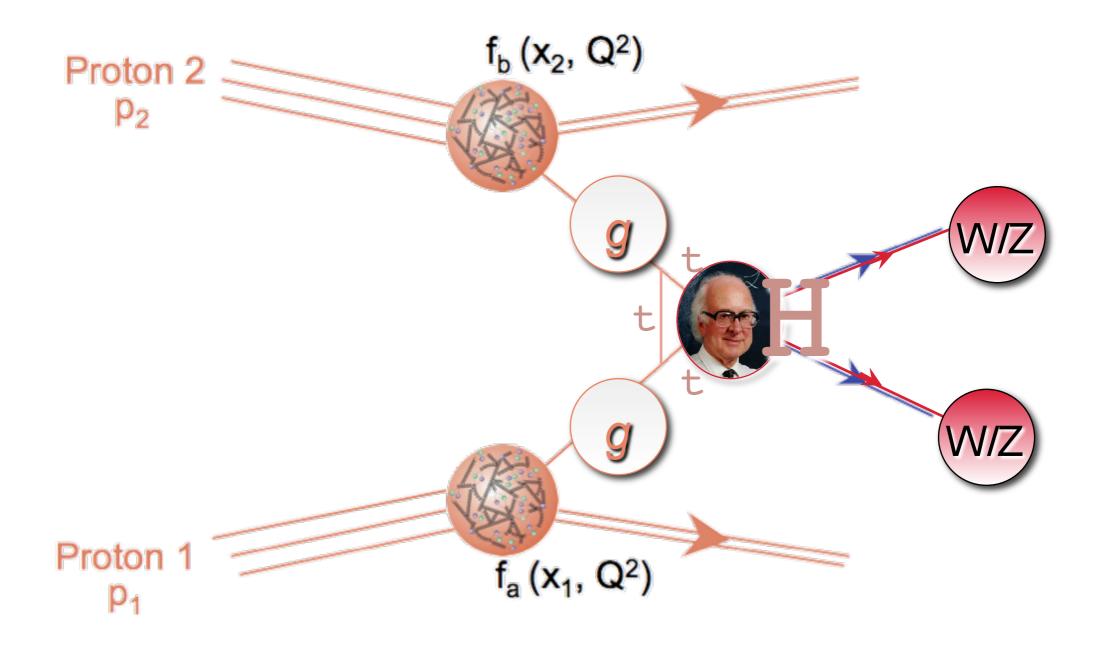


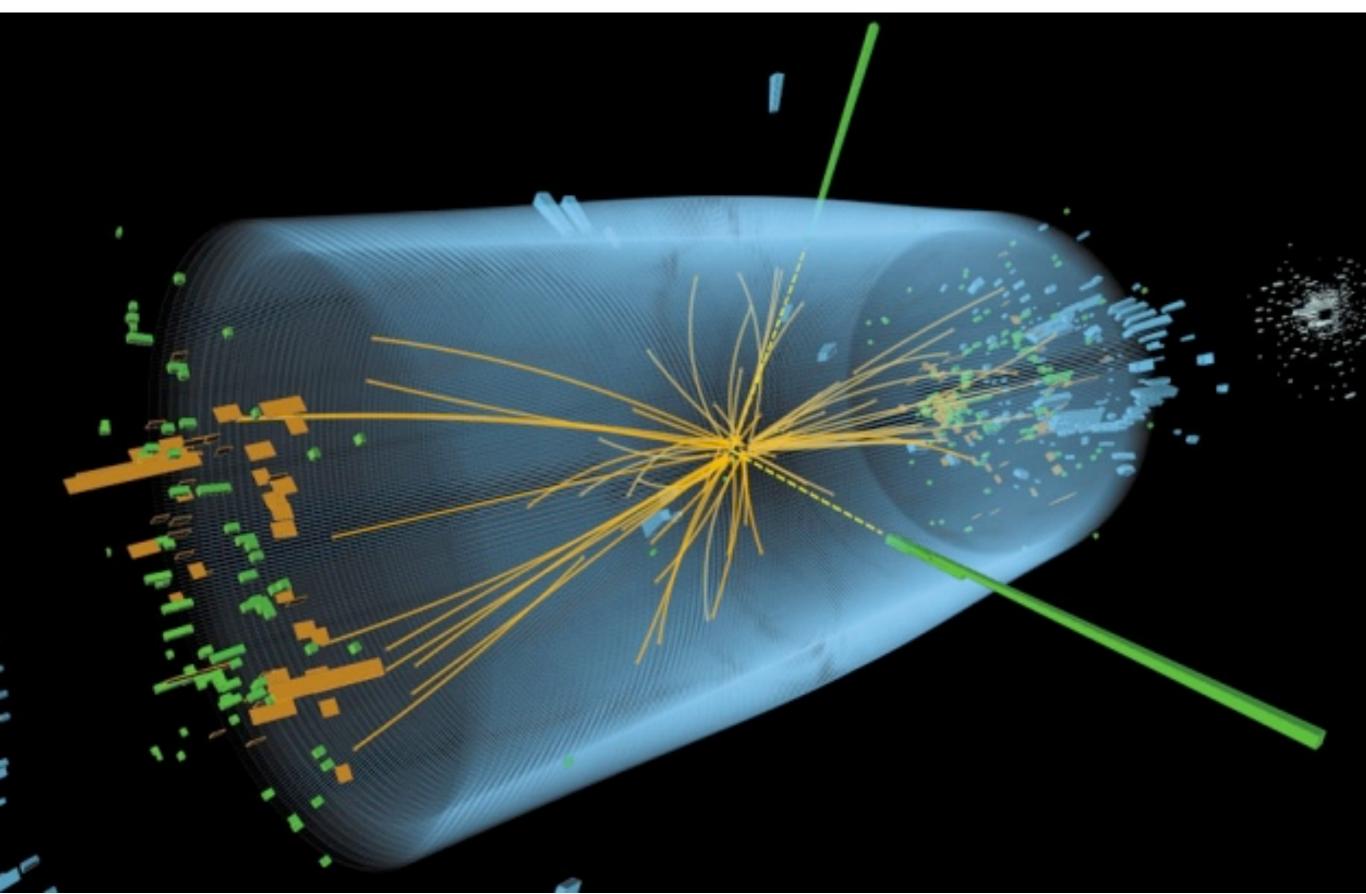
Difficult task

Homer Simpson's principle of life:

If something's hard to do, is it worth doing?

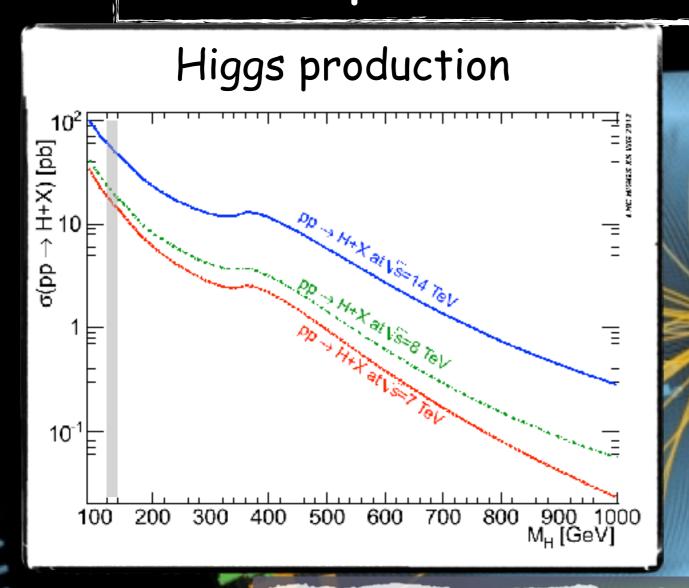


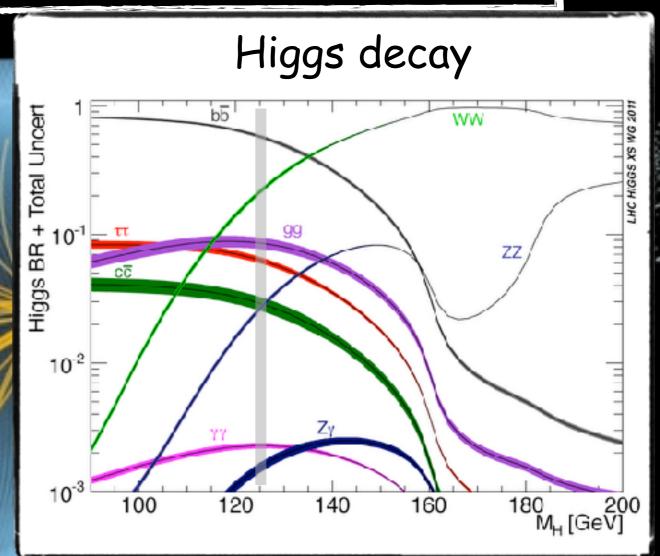




Intro HEP-Theory

 $\sigma \sim 10 \text{ pb} \Leftrightarrow 10^5 \text{ events for L=10 fb}^{-1}$

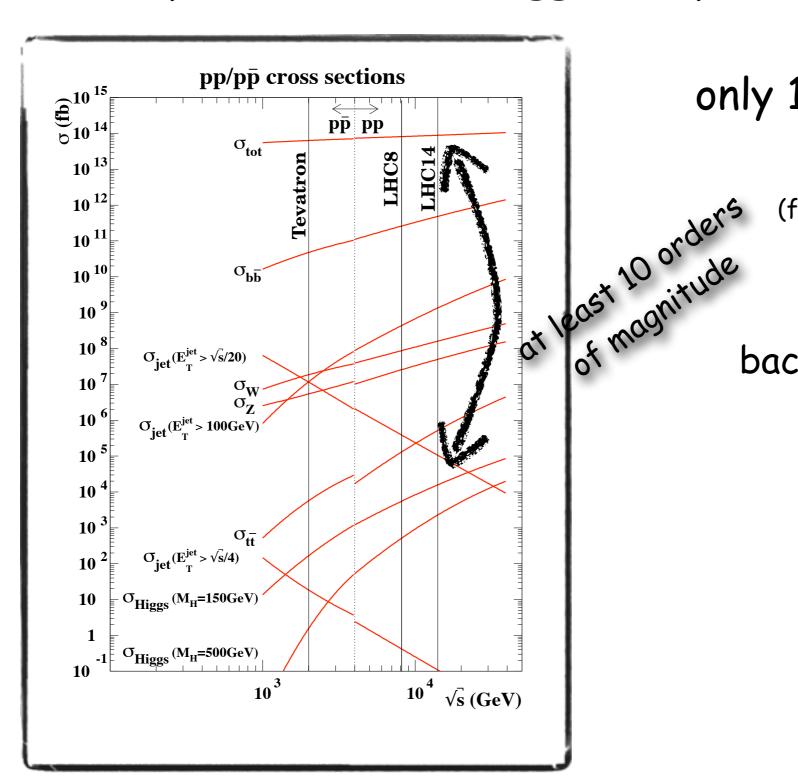




The LHC has produced 10⁵ Higgs bosons out of 10¹⁶ pp collisions

SM Higgs @ LHC

The production of a Higgs is wiped out by QCD background



only 1 out of 100 billions events are "interesting"

(for comparison, Shakespeare's 43 works contain only 884,429 words in total)

furthermore many of the background events furiously look like signal events

SM Higgs @ LHC

The production of a Higgs is wiped out by QCD background

only 1 out of 100 billions events are "interesting"

(for comparison, Shakespeare's 43 works contain only 884,429 words in total)

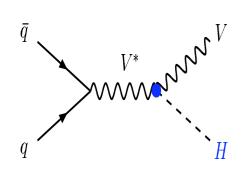
furthermore many of the background events furiously look like signal events

... like finding the paper you are looking for in (108 copies of)

John Ellis' office

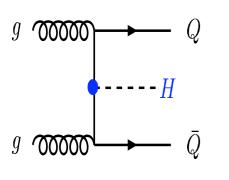
(SM) Higgs Production @ the LHC

Higgs-strahlung

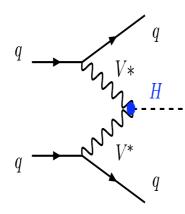


 \propto 1/s: Tevatron, LHC

QQ associated production

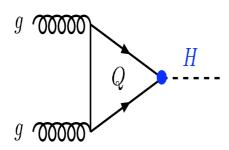


Vector boson fusion



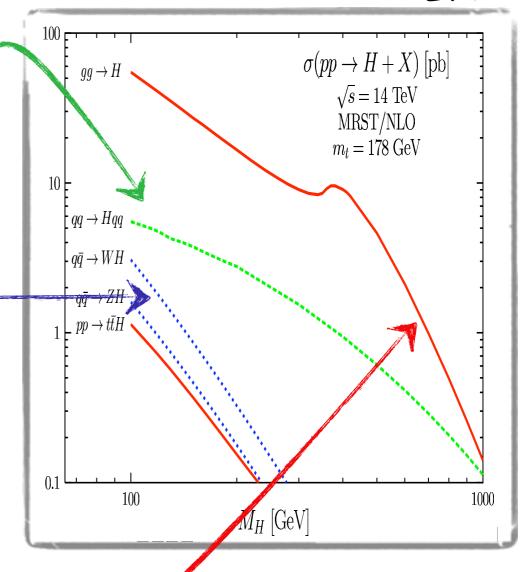
forward jet tagging central jet veto small hadronic activity

Gluon fusion



single final state large NLO enhancement more about Higgs physics see A. Raspereza's lectures

LHC



Appendix III

SM Lagrangian

5M gauge symmetries explicitly

Gauge Group $U(1)_Y$ (abelian)

$$\psi' = e^{+iY\alpha_Y}\psi,$$

$$B'_{\mu} = B_{\mu} - \frac{1}{g'}\partial_{\mu}\alpha_Y$$

$$B_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu}$$

$$D_{\mu}\psi_{R} = \left(\partial_{\mu} + i g' Y B_{\mu}\right) \psi_{R}$$

Gauge Group $SU(2)_L$

acts on the two components of a doublet Ψ_L =(u_L,d_L) or (ν_L ,e_L)

$$\Psi_L$$
 =(uL,dL) or ($u_{\! extsf{L}}$,eL)

$$\Psi_L \to e^{-iT^a \alpha^a} \psi_L \qquad U = e^{-iT^a \alpha^a}$$

$$U = e^{-iT^a \alpha^a}$$

$$T^a = \sigma^a/2$$

Pauli matrices

$$W^a_{\mu\nu} = \partial_{\mu}W^a_{\nu} - \partial_{\nu}W^a_{\mu} + g\epsilon^{abc}W^b_{\mu}W^c_{\nu}, \quad a = 1,\dots,3$$

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma_2 = -i \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$D_{\mu}\psi_{L} = \left(\partial_{\mu} - ig\,W_{\mu}^{a}T^{a}\right)\psi_{L}$$

Gauge Group $SU(3)_c$

 $q=(q_1,q_2,q_3)$ (the three color degrees of freedom)

$$q \to e^{-iT^a \alpha^a} q$$
 $U = e^{-iT^a \alpha^a}$

$$U = e^{-iT^a \alpha^a}$$

$$\left[T^a,T^b
ight]=if^{abc}T^c$$
 (3×3) Gell-Man matrices

$$G^a_\mu T^a \to U G^a_\mu T^a U^{-1} - \frac{i}{g} \partial_\mu U U^{-1}$$

$$\lambda_1 = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right)$$

$$\lambda_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda_2 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$G^{a}_{\mu\nu} = \partial_{\mu}G^{a}_{\nu} - \partial_{\nu}G^{a}_{\mu} + gf^{abc}G^{b}_{\mu}G^{c}_{\nu}, \quad a = 1, \dots, 8$$

$$\lambda_4 = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{array} \right) \quad \lambda_5 = \left(\begin{array}{ccc} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{array} \right) \quad \lambda_6 = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right)$$

$$\begin{array}{c} -i \\ 0 \\ 0 \end{array} \right) \quad \lambda_6 = \left(\begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right)$$

$$D_{\mu}q = \left(\partial_{\mu} - ig\,G_{\mu}^{a}T^{a}\right)q$$

$$\lambda_7 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \qquad \lambda_8 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

Intro HEP-Theory 90 Christophe Grojean

DESY, July/August 2018

5M gauge symmetries explicitly

Gauge Group $U(1)_Y$ (abelian)

$$\psi' = e^{+iY\alpha_Y}\psi,$$

$$B'_{\mu} = B_{\mu} - \frac{1}{g'}\partial_{\mu}\alpha_Y$$

$$B_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu}$$

$$D_{\mu}\psi_{R} = (\partial_{\mu} + i g' Y B_{\mu}) \psi_{R}$$

Gauge Group $SU(2)_L$

$$\Psi_L \to e^{-iT^a \alpha^a} \psi_L \qquad U = e^{-iT^a \alpha^a}$$

$$W^a_{\mu\nu} = \partial_{\mu}W^a_{\nu} - \partial_{\nu}W^a_{\mu} + g\epsilon^{abc}W^b_{\mu}W^c_{\nu}, \quad a = 1,\dots,3$$

$$D_{\mu}\psi_{L} = \left(\partial_{\mu} - i\,g\,W_{\mu}^{a}T^{a}\right)\psi_{L}$$

Gauge Group $SU(3)_c$

$$q \to e^{-iT^a \alpha^a} q \qquad U = e^{-iT^a \alpha^a}$$

$$G^a_\mu T^a \to U G^a_\mu T^a U^{-1} - \frac{i}{g} \partial_\mu U U^{-1}$$

$$G^a_{\mu\nu} = \partial_\mu G^a_\nu - \partial_\nu G^a_\mu + g f^{abc} G^b_\mu G^c_\nu, \quad a = 1, \dots, 8$$

$$D_{\mu}q = \left(\partial_{\mu} - ig\,G_{\mu}^{a}T^{a}\right)q$$

all Standard Model fermions carry U(1) charge

$$\Psi_L$$
 =(u_L,d_L) or ($u_{
m L}$,e_L)

only left-handed fermions charged under it -> chiral interactions

$$q=(q_1,q_2,q_3)$$

all quarks transform under QCD -> vector-like interactions

The SM particle content

Field	SU(3)	$SU(2)_L$	T^3	$\frac{Y}{2}$	$Q = T^3 + \frac{Y}{2}$
g^a_μ (gluons)	8	1	0	0	0
(W_μ^\pm,W_μ^0)	1	3	$(\pm 1,0)$	0	$(\pm 1,0)$
B^0_μ	1	1	0	0	0
$Q_L = \left(\begin{array}{c} u_L \\ d_L \end{array}\right)$	3	2	$\left(\begin{array}{c} \frac{1}{2} \\ -\frac{1}{2} \end{array}\right)$	$\frac{1}{6}$	$\left(\begin{array}{c} \frac{2}{3} \\ -\frac{1}{3} \end{array}\right)$
u_R	3	1	0	$\frac{2}{3}$	$\frac{2}{3}$
d_R	3	1	0	$-\frac{1}{3}$	$-\frac{1}{3}$
$E_L = \left(\begin{array}{c} \nu_L \\ e_L \end{array}\right)$	1	2	$\left(\begin{array}{c} \frac{1}{2} \\ -\frac{1}{2} \end{array}\right)$	$-\frac{1}{2}$	$\left(\begin{array}{c}0\\-1\end{array}\right)$
e_R	1	1	0	-1	-1
$\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$	1	2	$\left(\begin{array}{c} \frac{1}{2} \\ -\frac{1}{2} \end{array}\right)$	$\frac{1}{2}$	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$

The SM Lagrangian

$$\mathcal{L}_{\text{gauge}} = -\frac{1}{4}G^{a}_{\mu\nu}G^{a\mu\nu} - \frac{1}{4}W^{a}_{\mu\nu}W^{a\mu\nu} - \frac{1}{4}B_{\mu\nu}B^{\mu\nu}$$

describe massless gauge bosons

$$\mathcal{L}_{\mathrm{Fermion}} = \sum_{\mathrm{quarks}} i \overline{q} \gamma^{\mu} D_{\mu} q + \sum_{\psi_L} i \overline{\psi_L} \gamma^{\mu} D_{\mu} \psi_L + \sum_{\psi_R} i \overline{\psi_R} \gamma^{\mu} D_{\mu} \psi_R \qquad \text{interactions with gauge bosons} \\ D_{\mu} \psi_R = \left[\partial_{\mu} + i g' Y B_{\mu} \right] \psi_R$$

$$D_{\mu}\psi_{R} = \left[\partial_{\mu} + ig'YB_{\mu}\right]\psi_{R}$$

fermions

only left-handed all fermions carrying a U(1)y charge i.e. all Standard Model fermions

$$\mathcal{L}_{\mathrm{Higgs}} = (D_{\mu}\Phi)^{\dagger} D_{\mu}\Phi + \mu^{2}\Phi^{\dagger}\Phi - \lambda \left(\Phi^{\dagger}\Phi\right)^{2} \longrightarrow \begin{array}{c} \text{gives mass to EW} \\ \text{gauge bosons} \end{array} \quad \frac{1}{2} M_{Z}^{2} Z_{\mu} Z^{\mu} + M_{W}^{2} W_{\mu}^{+} W^{-\mu}$$

$$D_{\mu}\Phi = \left[\partial_{\mu} - i\frac{g}{\sqrt{2}} \left(\tau^{+}W_{\mu}^{+} + \tau^{-}W_{\mu}^{-}\right) - i\frac{g}{2}\tau_{3}W_{\mu}^{3} + i\frac{g'}{2}B_{\mu}\right]\Phi$$

: covariant derivative of the Higgs

H charged under $SU(2) \times U(1)_{y}$

responsible for electroweak symmetry breaking!

$$\mathcal{L}_{\mathrm{Yukawa}} = -Y_l \, \overline{L} \, \Phi \, \ell_R - Y_d \, \overline{Q} \, \Phi \, d_R - Y_u \, \overline{Q} \, \widetilde{\Phi} \, u_R + \mathrm{h.c.}$$
 gives mass to fermions_

$$SU(3) \times SU(2)_L \times U(1)_Y \longrightarrow SU(3) \times U(1)_{em}$$

8 massless gluons

3 massive gauge bosons W+ W- Z₀

gluons

8 massless 1 massless photon '/

remaining unbroken symmetry

The W and Z bosons interact with the Higgs medium, the γ doesn't.

$$\mathcal{L}_{\text{gauge}} = -\frac{1}{4} G^{a}_{\mu\nu} G^{a\mu\nu} - \frac{1}{4} W^{a}_{\mu\nu} W^{a\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu}$$

 $SU(3)_c$

$$G^a_{\mu\nu} = \partial_\mu G^a_\nu - \partial_\nu G^a_\mu + g f^{abc} G^b_\mu G^c_\nu$$

 $SU(2)_L$

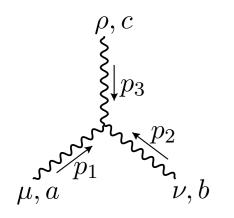
$$W^a_{\mu\nu} = \partial_\mu W^a_\nu - \partial_\nu W^a_\mu + g\epsilon^{abc} W^b_\mu W^c_\nu,$$

 $U(1)_Y$

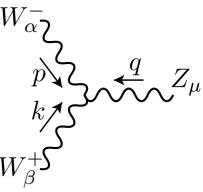
$$B_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu}$$

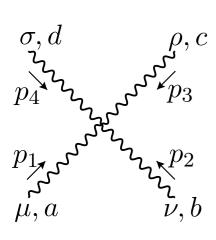
in mass eigenstate basis

$$W_{\mu}^{\pm} = \frac{W_{\mu}^{1} \mp i W_{\mu}^{2}}{\sqrt{2}} \qquad Z_{\mu} = W_{\mu}^{3} \cos \theta_{W} + B_{\mu} \sin \theta_{W}$$
$$A_{\mu} = -W_{\mu}^{3} \sin \theta_{W} + B_{\mu} \cos \theta_{W}$$
$$\cos \theta_{W} = g/\sqrt{g^{2} + g'^{2}} \qquad \sin \theta_{W} = g'/\sqrt{g^{2} + g'^{2}}$$



three gauge boson vertex

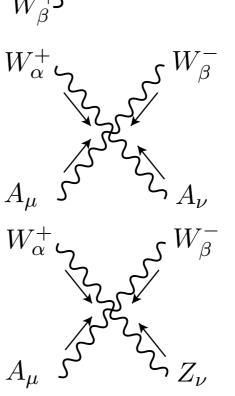


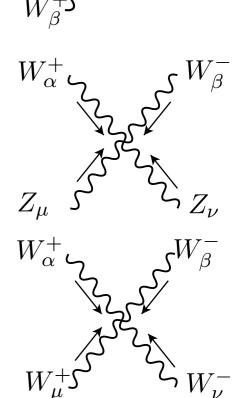


four gauge boson vertex

> no such interactions for photon!

Intro HEP-Theory

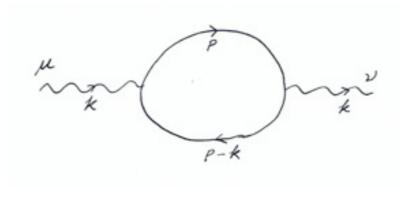




DESY, July/August 2018

Renormalization

particles created from the vacuum screen the electric charge

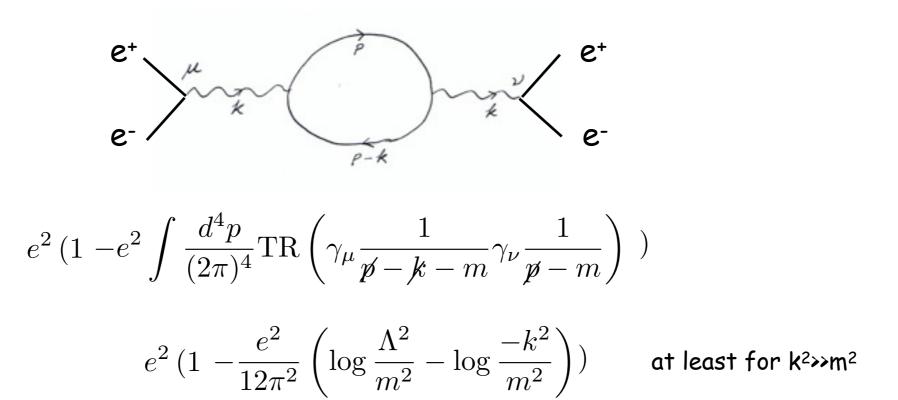


$$-e^{2} \int \frac{d^{4}p}{(2\pi)^{4}} \operatorname{TR}\left(\gamma_{\mu} \frac{1}{\not p - \not k - m} \gamma_{\nu} \frac{1}{\not p - m}\right)$$

$$= -\frac{e^2}{12\pi^2} \left(\log \frac{\Lambda^2}{m^2} - \log \frac{-k^2}{m^2} \right)$$

Renormalization

particles created from the vacuum screen the electric charge



absorb the divergent piece into a renormalized charge

express result in term of renormalized charge

$$e_R^2 = e^2 \left(1 - \frac{e^2}{12\pi^2} \log \frac{\Lambda^2}{m^2} \right)$$

$$e_R^2(k^2) \left(1 - \frac{e_R^2(k^2 = 0)}{12\pi^2} \log \frac{-k^2}{m^2} \right)$$

the electric charge now depends on the energy of the electrons

Ward identity: the dependence with the energy is the same for all particles (electrons, muons, quarks...)

it is universal physical effect associated to the gauge symmetry

Evolution of coupling constants

Classical physics: the forces depend on distances

Quantum physics: the charges depend on distances

QED: virtual particles screen the electric charge: $\alpha \searrow$ when d \nearrow

QCD: virtual particles (quarks and *gluons*) screen the strong charge:

 α_s 1 when d 1

'asymptotic freedom'

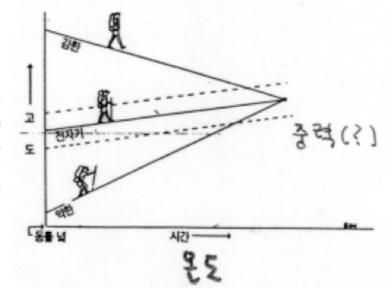
more about QCD/jets see M. Diehl's lectures

$$\frac{\partial \alpha_s}{\partial \log E} = \beta(\alpha_s) = \frac{\alpha_s^2}{\pi} \left(-\frac{11N_c}{6} + \frac{N_f}{3} \right)$$

SM β fcts

g, g' and gs are different but it is a low energy artifact!

$$\beta = \frac{dg}{d\log\mu} = -\frac{1}{16\pi^2}bg^3 + \dots$$



$$\frac{1}{g^2(Q)} = \frac{1}{g^2(Q_0)} + \frac{b}{16\pi^2} \ln \frac{Q^2}{Q_0^2}$$

$$b = \frac{11}{3}T_2(\text{spin-1}) - \frac{2}{3}T_2(\text{chiral spin-1/2}) - \frac{1}{3}T_2(\text{complex spin-0})$$

$$\operatorname{Tr}\left(T^a(R)T^b(R)\right) = T_2(R)\delta^{ab}$$
 $T_2(\operatorname{fund}) = \frac{1}{2}$ $T_2(\operatorname{adj}) = N$

$$T_2(\mathtt{fund}) = rac{1}{2}$$

$$T_2(\mathtt{adj}) = N$$

$$g \qquad Q_L \qquad u_R^c \qquad d_R^c$$

$$b_{SU(3)} = \frac{11}{3} \times 3 - \frac{2}{3} \left(\frac{1}{2} \times 2 \times 3 + \frac{1}{2} \times 1 \times 3 + \frac{1}{2} \times 1 \times 3\right) = 7$$

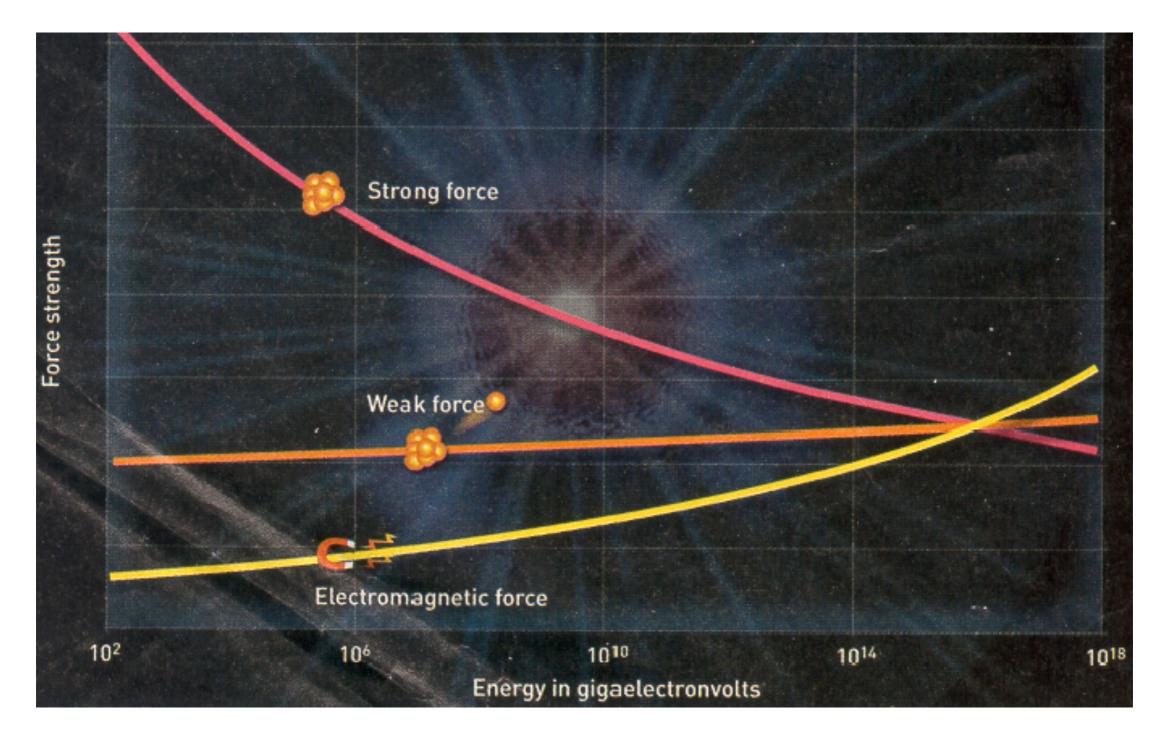
$$W^{\pm}, Z \qquad Q_L \qquad L \qquad H$$

$$b_{SU(2)} = \frac{11}{3} \times 2 - \frac{2}{3} \left(\frac{1}{2} \times 3 \times 3 + \frac{1}{2} \times 1 \times 3\right) - \frac{1}{3} \times \frac{1}{2} = 9$$

$$Q_L \qquad u_R^c \qquad d_R^c \qquad L \qquad e_R^c \qquad H$$

$$b_Y = -\frac{2}{3} \left(\left(\frac{1}{6}\right)^2 3 \times 2 \times 3 + \left(-\frac{2}{3}\right)^2 3 \times 3 + \left(\frac{1}{3}\right)^2 3 \times 3 + \left(-\frac{1}{2}\right)^2 2 \times 3 + (1)^2 \times 3\right) - \frac{1}{3} \left(\frac{1}{2}\right)^2 \times 2 = -\frac{41}{6}$$

Grand Unified Theories



A single form of matter
A single fundamental interaction

SU(5) GUT: Gauge Group Structure

 $SU(3)_c \times SU(2)_L \times U(1)_y$: SM Matter Content

$$Q_L = \begin{pmatrix} u_L \\ d_L \end{pmatrix} = (3,2)_{1/6}, \quad u_R^c = (\bar{3},1)_{-2/3}, \quad d_R^c = (\bar{3},1)_{1/3}, \quad L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} = (1,2)_{-1/2}, \quad e_R^c = (1,1)_1$$
 How can you ever remember all these numbers?

 $SU(3)_c \times SU(2)_L \times U(1)_Y \subset SU(5)$

$$Tr(T^a T^b) = \frac{1}{2} \delta^{ab}$$

$$\begin{pmatrix} SU(2) & \\ & SU(3) \end{pmatrix}$$

additional U(1) factor that

$$SU(5)$$
Adjoint rep.
$$Tr(T^aT^b) = \frac{1}{2}\delta^{ab}$$

$$\bar{5} = (1,2)_{-\frac{1}{2}\sqrt{\frac{3}{5}}} + (\bar{3},1)_{\frac{1}{3}\sqrt{\frac{3}{5}}}$$
$$\bar{5} = L + d_R^c$$

$$10 = (5 \times 5)_A = (\overline{3}, 1)_{-\frac{2}{3}\sqrt{\frac{3}{5}}} + (3, 2)_{\frac{1}{6}\sqrt{\frac{3}{5}}} + (1, 1)_{\sqrt{\frac{3}{5}}}$$
$$10 = u_R^c + Q_L + e_R^c$$

$$T^{12} = \sqrt{\frac{3}{5}}Y$$
 $g_5\sqrt{\frac{3}{5}} = g'$ $g_5 = g = g_s$

$$g_5\sqrt{rac{3}{5}}$$

$$g_5 = g = g_5$$

$$g_5 T^{12} = g' Y$$

$$\sin^2 \theta_W = rac{3}{8}$$
 @ M_{GUT}

SU(5) GUT: Gauge Group Structure

 $SU(3)_c \times SU(2)_L \times U(1)_y$: SM Matter Content

$$Q_L = \begin{pmatrix} u_L \\ d_L \end{pmatrix} = (3,2)_{1/6}, \quad u_R^c = (\bar{3},1)_{-2/3}, \quad d_R^c = (\bar{3},1)_{1/3}, \quad I = \begin{pmatrix} \nu_L \\ \nu_L \end{pmatrix} = (1,1)_1$$
 How can you ever — wicely into

the SM matter fits nicely into representations of SU(5), even more nicely into 50(10) unification baryon-lepton

$$\bar{5} = (\bar{1}, 2)_{-\frac{1}{2}\sqrt{\frac{3}{5}}} + (\bar{3}, 1)_{\frac{1}{3}\sqrt{\frac{3}{5}}}$$

$$\bar{5} = L + d_R^c$$

$$10 = (5 \times 5)_A = (\overline{3}, 1)_{-\frac{2}{3}\sqrt{\frac{3}{5}}} + (3, 2)_{\frac{1}{6}\sqrt{\frac{3}{5}}} + (1, 1)_{\sqrt{\frac{3}{5}}}$$
$$10 = u_R^c + Q_L + e_R^c$$

$$T^{12} = \sqrt{\frac{3}{5}}Y$$

$$g_5 T^{12} = g' Y$$

$$T^{12} = \sqrt{\frac{3}{5}}Y$$
 $g_5\sqrt{\frac{3}{5}} = g'$ $g_5 = g = g_s$

$$\sin^2 \theta_W = rac{3}{8}$$
 @ M_{GUT}

Ad

 $\operatorname{Tr}(\mathbb{R})$

SU(5) GUT: low energy consistency condition

more about GUT, see F. Bruemmer's lectures

$$\frac{1}{\alpha_i(M_Z)} = \frac{1}{\alpha_{GUT}} - \frac{b_i}{4\pi} \ln \frac{M_{GUT}^2}{M_Z^2} \qquad i = SU(3), SU(2), U(1)$$

$$lpha_3(M_Z), lpha_2(M_Z), lpha_1(M_Z)$$
 experimental inputs
$$b_3, b_2, b_1$$
 predicted by the matter content

3 equations & 2 unknowns (α_{GUT}, M_{GUT})

one consistency relation for unification

$$\epsilon_{ijk} \frac{b_j - b_k}{\alpha_i(M_Z)} = 0 \qquad \Box \qquad \qquad \Box \qquad \qquad \\ \boxed{ \sin^2 \theta_W = \frac{3(b_3 - b_2)}{8b_3 - 3b_2 - 5b_1} + \frac{5(b_2 - b_1)}{8b_3 - 3b_2 - 5b_1} \frac{\alpha_{em}(M_Z)}{\alpha_s(M_Z)} }$$

$$\alpha_{em}(M_Z) \approx \frac{1}{128} \qquad \alpha_s(M_Z) \approx 0.1184 \pm 0.0007$$

$$\int \sin^2 \theta_W \approx 0.207$$

not so bad...

SU(5) GUT: low energy consistency condition

more about GUT, see F. Bruemmer's lectures

$$\frac{1}{\alpha_i(M_Z)} = \frac{1}{\alpha_{GUT}} - \frac{b_i}{4\pi} \ln \frac{M_{GUT}^2}{M_Z^2} \qquad i = SU(3), SU(2), U(1)$$

$$lpha_3(M_Z), lpha_2(M_Z), lpha_1(M_Z)$$
 experimental inputs
$$b_3, b_2, b_1$$
 predicted by the matter content

3 equations & 2 unknowns (α_{GUT}, M_{GUT})

one consistency relation for unification

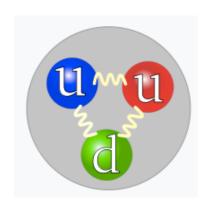
$$M_{GUT} = M_Z \exp\left(2\pi \frac{3\alpha_s(M_Z) - 8\alpha_{em}(M_Z)}{(8b_3 - 3b_2 - 5b_1)\alpha_s(M_Z)\alpha_{em}(M_Z)}\right) \approx 7 \times 10^{14} \text{ GeV}$$

$$\alpha_{GUT}^{-1} = \frac{3b_3\alpha_s(M_Z) - (5b_1 + 3b_2)\alpha_{em}(M_Z)}{(8b_3 - 3b_2 - 5b_1)\alpha_s(M_Z)\alpha_{em}(M_Z)} \approx 41.5$$

self-consistent computation: • M_{GUT} < M_{PI} safe to neglect quantum gravity effects

 $\circ \alpha_{GUT} << 1$ perturbative computation

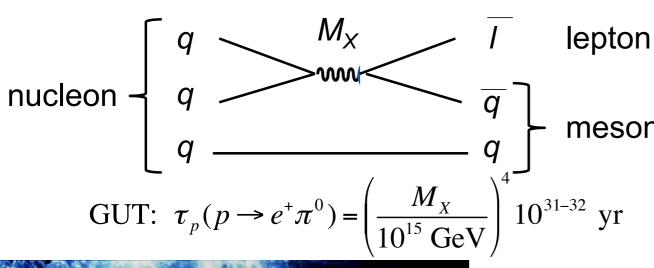
Proton Decay



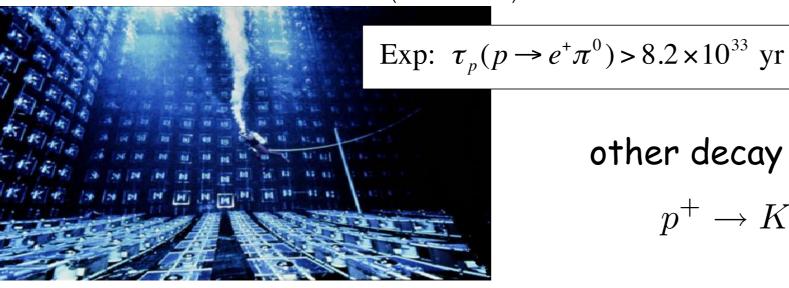
why is the proton stable?

electric charge conservation? baryon number conservation?

938.2720813(58) MeV

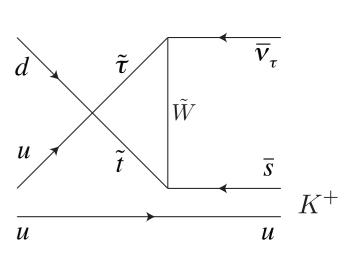


in GUT, "matter" is unstable decay of proton mediated by new SU(5)/SO(10) gauge bosons



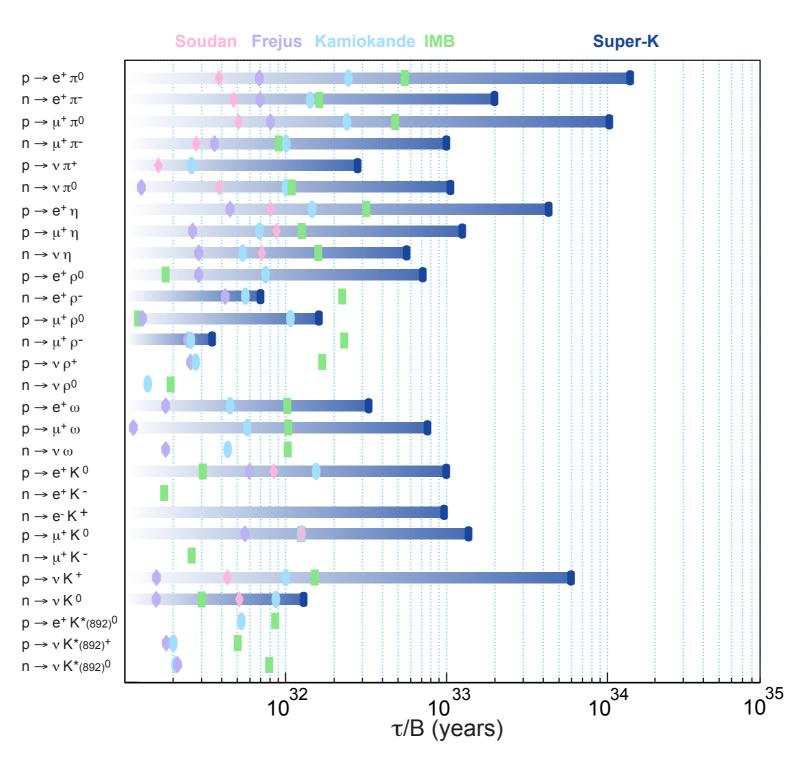
other decay mode:

$$p^+ \to K^+ \overline{\nu}$$



(G. Giudice SSLP'15)

Proton Decay



Babu et al '13