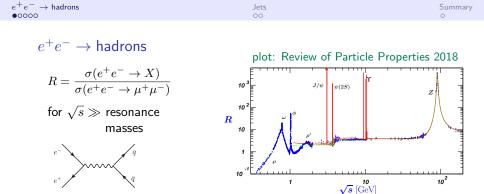
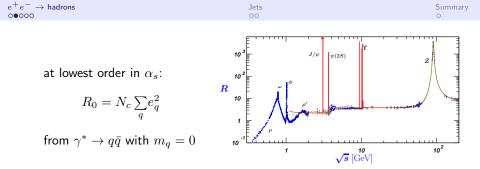
QCD Theory Part 2


M. Diehl

Deutsches Elektronen-Synchroton DESY

DESY Summer Student Programme 2018, Hamburg


▶ removing electroweak part $\rightsquigarrow \sum_X |\mathcal{A}(\gamma^* \text{ or } Z^* \to X)|^2$

- among simplest applications of perturbative QCD
 - fully inclusive final state no hadrons in initial state
- closely related theory description for

$$R_{\tau} = \frac{\Gamma(\tau \to \nu_{\tau} + X)}{\Gamma(\tau \to \nu_{\tau} + e\nu_{e})} \quad \rightsquigarrow \quad \sum_{X} |\mathcal{A}(W^{*} \to X)|^{2}$$

QCD Theory

• expansion known up to $R = R_0 \left[1 + \frac{1}{\pi} \alpha_s + C_2 \alpha_s^2 + C_3 \alpha_s^3 + C_4 \alpha_s^4 \right]$

- quark mass corrections also partly known
- ▶ same for *τ* decays
- suitable observables for α_s determination
- underlying concept: parton-hadron duality:

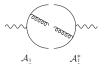
$$\sum_{X \in \text{partons}} |\mathcal{A}(\gamma^* \to X)|^2 = \sum_{X \in \text{hadrons}} |\mathcal{A}(\gamma^* \to X)|^2$$

- $\blacktriangleright~\gamma^* \rightarrow$ partons valid description for short space-time $\sim 1/\sqrt{s}$
- subsequent dynamics changes final state, but not inclusive rate

$e^+e^- \rightarrow$	hadrons
00000	

A closer look at the $\mathcal{O}(\alpha_s)$ corrections

▶ expand $\mathcal{A}(q\bar{q}g) = g\mathcal{A}_1 + \dots$ and $\mathcal{A}(q\bar{q}) = \mathcal{A}_0 + g^2\mathcal{A}_2 + \dots$

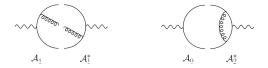

 $\begin{array}{ll} \mbox{real corrections:} & \mbox{extra partons in final state} \\ \mbox{virtual corrections:} & \mbox{loops in } \mathcal{A} \mbox{ or } \mathcal{A}^* \end{array}$


- virtual corrections have UV divergences

 → standard renormalisation procedure
- real and virtual corrections: soft and collinear divergences
 - \blacktriangleright regions where gluon momentum $\rightarrow 0$ or \propto momentum of q or \bar{q}
 - cancel in sum over all graphs

$e^{+}e^{-}$	\rightarrow	hadrons
00000		

A closer look at soft and collinear divergences



▶ more detail ~→ blackboard

$e^+e^- \rightarrow \text{hadrons}$	Jets oo	Summa O

A closer look at soft and collinear divergences

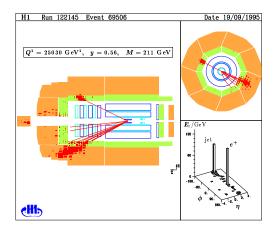
- ▶ have soft (= IR) div. because of massless gluons same phenomenon in QED: soft photons → "IR catastrophe"
- ► have collinear (= mass) div. if set quark masses to zero

could formally keep $m_q \neq 0,$ but perturbative results not trustworthy if virtualities $\sim {\rm MeV}^2$

 divergences cancel, result dominated by large virtualities otherwise could not use parton-hadron duality

$e^+e^- \rightarrow \text{hadrons}$	Jets oo	Summary O

A footprint of divergence cancellation: large logarithms

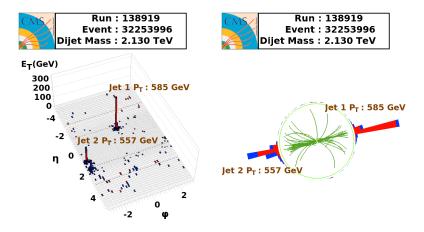

- ▶ both soft and collinear divergences are logarithmic: $\int dE/E \int d\theta/\theta$
- fixing final-state momenta restricts integration region in real corrections, but not in virtual ones
 - for each emission get double logarithm $\propto \alpha_s \log^2(...)$ "Sudakov logarithms"
 - if logarithms are large must sum them to all orders in α_s "resummation"
 - can be done analytically for certain cases
 - done by "parton showers" in Monte Carlo generators

Beyond inclusive final states: hadronic jets

▶ jet = "bunch of hadrons moving approx. in same direction"

Jets

perhaps the most direct manifestation of quarks or gluons


Beyond inclusive final states: hadronic jets

▶ jet = "bunch of hadrons moving approx. in same direction"

Jets

.

perhaps the most direct manifestation of quarks or gluons

Beyond inclusive final states: hadronic jets

- ► extend idea of parton-hadron duality: dynamics leading from partons (times ~ 1/Q) to final-state hadrons (times → ∞) approx. conserves momentum (hadronisation effects ~ GeV)
- to minimise theory uncertainties:
 - define hadronic jets using an algorithm that is not sensitive to collinear and soft radiation (beyond perturbative control)

- apply to partons in computation, to hadrons in measurement

 $e^+e^- \rightarrow hadrons$

Summary of part 2

- perturbative calculations beyond tree level only for quantities that are IR and collinear safe and hence dominated by large virtualities
- simplest examples: total cross sections/decay rates for colourless initial states
- for differential cross sections/distributions: can have large double logarithms from soft and collinear emissions
- for jets in final state suitable (and unsuitable) observables exist