Study of parton distributions in π^- within the xFitter framework Summerstudent report

Novikov Ivan Supervisor: Alexander Glazov

Moscow Institute for Physics and Technology, Russia

September 5, 2018

Parton Distribution Functions (PDFs)

• Cannot calculate PDFs $f_i(x) \implies$ fit to data

- An open-source QCD fitting framework
- Various \(\chi^2\) definitions and statistical corrections
- Estimation of errors
- Historical role in determination of proton PDFs

- An open-source QCD fitting framework
- Various \(\chi^2\) definitions and statistical corrections
- Estimation of errors
- Historical role in determination of proton PDFs
- But no support for particles different from proton

- An open-source QCD fitting framework
- Various \(\chi^2\) definitions and statistical corrections
- Estimation of errors
- Historical role in determination of proton PDFs
- But no support for particles different from proton
- \bigcirc
- Now supports pions too! (My work in experimental branch)

Data

Experiment E615 (Conway et al., Phys. Rev.D39:92–122, 1989) Drell-Yan scattering of negatively charged pion on a tungsten target:

$$\pi^- + {}_{76}W \to \mu^+\mu^- + X$$

 $E_{\pi} = 252 \text{GeV}$ Data provided as $\frac{d\sigma}{dx_F d\sqrt{\tau}}$, where

$$x_F = \frac{2p_L}{\sqrt{s}} \qquad \qquad \sqrt{\tau} = \frac{m_{\mu\mu}}{\sqrt{s}},$$

where $m_{\mu\mu}$, p_L are invariant mass and longitudial momentum of the muon pair

$\sqrt{\tau}$		X _F		$d\sigma/dx_F d\sqrt{\tau}$
Low	High	Low	High	(nb/nucleon)
0.300	0.323	0.40	0.50	0.424±0.048
0.300	0.323	0.50	0.60	0.297±0.037
0.300	0.323	0.60	0.70	0.183 ± 0.024
0.300	0.323	0.70	0.80	0.101 ± 0.014
0.300	0.323	0.80	0.90	0.039 ± 0.008
0.323	0.346	-0.20	-0.10	0.388±0.087
0.323	0.346	-0.10	0.00	0.281±0.057
0.323	0.346	0.00	0.10	0.366±0.055

TABLE VI. (Continued).

Fitting cycle

Fitting cycle

Assume SU(3)-symmetric sea at starting scale $Q_0^2 = 1.9 \text{GeV}^2$:

$$d = \overline{u}$$
 $u = \overline{d} = s = \overline{s}$

Parameterise distributions $v := \frac{d - \bar{d} - u + \bar{u}}{2} := \Lambda_1 x^{B_v} (1 - x)^{C_v}$ $S := \frac{u + \bar{d}}{2} := A_S x^{B_S} (1 - x)^{C_S}$ $g := g := \Lambda_2 x^{B_g} (1 - x)^{C_g}$

$$\begin{split} v &:= \Lambda_1 x^{B_v} (1-x)^{C_v} \\ S &:= A_S x^{B_S} (1-x)^{C_S} \\ g &:= \Lambda_2 x^{B_g} (1-x)^{C_g} \end{split}$$

Here Λ_1 and Λ_2 are not free, but constrained by sum rules:

$$\int_{0}^{1} (u - \bar{u}) dx = -1 \quad \int_{0}^{1} (d - \bar{d}) dx = 1$$
$$\int_{0}^{1} x (u + \bar{u} + d + \bar{d} + s + \bar{s} + g) dx = 1$$

or, in terms of v, S, g:

$$\int_0^1 v dx = 1 \qquad \int_0^1 x (2v + 6S + g) dx = 1$$

 π

Fitting cycle

Full calculation of NLO cross-sections at each iteration is too slow We used APPLgrid library to calculate cross section:

$$\iint_{0}^{1} dx_{1} dx_{2} f^{\pi}(x_{1}) f^{\text{target}}(x_{2}) d\sigma(x_{1}, x_{2}) \rightsquigarrow \sum_{i,j=1}^{N} f^{\pi}(x_{i}) f^{\text{target}}(x_{j}) W_{ij}$$

- Pion PDF f^{π} varied during fit
- Tungsten target PDF f^{target} used LHAPDF set nCTEQ15FullNuc_184_74 (Kovarik et.al., Phys. Rev. D93, 2016)
- ▶ W_{ij} generated once by running 1000 instances of MCFM on BIRD

Fit results

The results are compared to the only pion PDF set available in LHAPDF library GRVPI0 (Glück et.al.,Z.Phys.C53, 1992)

$$\frac{\chi^2}{N_{DoF}} = \frac{209.10}{138} = 1.53$$

Fit results

Thank you for your attention!

Backup slides

 $f(x, Q^2)$ depend on scale Q^2

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi Equations

$$\frac{\partial f_i(x,Q^2)}{\partial \ln(Q^2)} = \sum_{j \in \{q,\tilde{q},g\}} \int_x^1 \frac{dz}{z} P_{ij}\left(\frac{x}{z},Q^2\right) f_j(z,Q^2)$$

• Evolve
$$f(x, Q_0^2) \rightarrow f(x, Q_1^2)$$

Splitting functions P_{ij} are derived in perturbative QCD

