Jet Energy Resolution at the ILC.

FLC Group

Niall McHugh

University of Glasgow

September 5, 2018

The Future of High Energy Physics

- The Standard Model is the best theoretical description of particle physics, and successfully models every accepted high energy physics experimental result
- However, it is incomplete
 - It does not include gravity
 - It doesn't contain any candidates for dark matter particles
- So, we must continue to probe for experimental disagreements which could lead to a new theory

Surce: https://commons.wikimedia.org.

wiki/File:Standard_Model_of_Elementary_

Particles.svg

Why the International Linear Collider (ILC)?

- Complement the physics program of the LHC by allowing more precise measurements of the properties of particles such as the *H* and *W* bosons and the top quark
- Produce new physics, e.g. search for further Higgs particles or dark matter candidates, measure H self coupling
- Technical Specifications:
 - $\sqrt{s} = 200$ to 500 GeV, future 1 TeV upgrade
 - Peak luminosity of $2 \times 10^{34} \ cm^{-2} s^{-1}$
 - Highly polarised beam for maximising process cross sections and background suppression: ±80% for e⁻¹, ±30% for e⁺¹
 - 5 Hz bunch train frequency allows passive cooling of detectors
 - No pileup
 - Uses superconducting RF cavities for acceleration - same as FLASH, XFEL

ILC Schematic

RF Accelarating Cavity

Source: https://www.linearcollider.org

The International Large Detector (ILD)

- First high energy physics detector capable of particle flow reconstruction (discussed later)
- The ILD will consist of several sub-detectors:
 - Vertex detector plus a few layers of Si tracker
 - Time Projection Chamber (TPC), giving dE/dx particle identification - momentum resolution of $\sigma_{P_t}/p_t^2 = 2 \times 10^{-5} GeV^{-1}$
 - Highly segmented calorimeter tiles
 - electromagnetic: 5mm × 5mm, resolution of $\sigma_E/E = 10\%/\sqrt{E(\text{GeV})}$
 - hadronic: 30mm x 30mm, resolution of $\sigma_E/E = 60\%/\sqrt{E(GeV)}$
 - 3.5T axial B field produced by a large superconducting coil, encased in a yoke - which functions as a muon detector
 - Forward region calorimeters for 4π angular coverage and luminosity measurements via Bhubha scattering
- ILD will be switched with Silicon Detector (SiD) every few weeks via push-pull system

Particle Flow Reconstruction

- Approach to calorimetry which improves jet energy resolution by reconstructing individual particles rather than just jets
- Made possible by combination of highly granular calorimeters and complex pattern recognition algorithms
 - For each particle, an energy measurement can be taken from only the most accurate detector subsystem with which it interacts
 - Jet composition is generally: 65% charged particles, 25% photons and 10% neutral hadrons
- Result is a collection of Particle Flow Objects (PFOs)
 - Possible to attempt to even identify the type of particle - important for detector calibration

Brief Overview: 1

What is a jet?

- **Cone** of particles, formed by the hadronisation of a quark or a gluon
- For example, when a qq̄ pair are pulled apart, they undergo QCD process to form a parton shower, which then hadronises into two jets

Why do we care about jets?

- Some particles are too short lived to be measured directly; only possibly to observe their decay products which can often result in jets
- So, want good jet energy resolution for precise measurements of e.g. Higgs properties

Brief Overview: 2

The $Z' \rightarrow q\bar{q}$ Event

- Simulate a stationary fictional Z boson with whatever \sqrt{s} we require, which decays to $q\bar{q}$ back to back
- · These then decay to form two jets
- Only consider uds to minimise neutrinos (compared to heavy quark events)

Why Do We Do This?

- Allows us to measure the jet energy resolution and scale of the detector and reconstruction algorithms, with no background
- This gives a comparison between different detector models/reconstruction **performances**
- Currently used method is an **approximation** to jet energy resolution

Brief Overview: 2

The $Z' \rightarrow q\bar{q}$ Event

- Simulate a stationary fictional Z boson with whatever \sqrt{s} we require, which decays to $q\bar{q}$ back to back
- · These then decay to form two jets
- Only consider uds to minimise neutrinos (compared to heavy quark events)

Why Do We Do This?

- Allows us to measure the jet energy resolution and scale of the detector and reconstruction algorithms, with no background
- This gives a comparison between different detector models/reconstruction **performances**
- Currently used method is an **approximation** to jet energy resolution

The aim of this project was to develop a more accurate method

Jet Energy Resolution

- Measure of how well we can identify the difference between two jets of similar energy
- Calculate based on the width of a distribution of measured energies, for jets of the same true energy, as:

resolution =
$$\frac{\text{rms}_{90}}{\text{mean}_{90}}$$

 Where rms₉₀, mean₉₀ are the rms and mean of a modified distribution containing only the central 90% of measurements

Jet Energy Scale

- Measure of how accurately our detector measures jets of known energy
- Easy way to check this is to plot reconstructed jet energy against true jet energy
- For a well calibrated detector, this plot will agree with the line *y* = *x*

Methods

• Total Energy Method

 Take all PFOs, sum reconstructed energy and divide by two (Assumption: reconstructed jet energies are equal)

• Monte Carlo (MC) Clustering

- Begin by looking at MC particles in event simulation, split initial particles into two jets and then iterate over these until we have all MC particles in each jet
- This is where most of my work was focused

• Durham Clustering Method

- Define a 'distance' between PFOs $d_{ij} = 2\min(E_i^2, E_i^2)(1 - \cos\theta_{ij})$
- Iteratively add particles together until we have only two jets

MC Jet Difference Cuts

- We want a distribution of reconstructed energy for a single true (MC) jet energy to measure jet energy resolution - but simulated events have a spread of true jet energy (always sum to √s)
 - Must apply a cut to eliminate events where jet energy is not close enough to $\sqrt{s}/2$

Example Event

Consider the following situation for a $\sqrt{s} = 100$ GeV event ($E_{pfo\ total} = 98$ GeV):

Final Results - Jet Energy Scale

Final Results - Jet Energy Resolution

Conclusions

- A fair comparison of the total energy method and jet clustering methods cannot be obtained
 - The total energy method makes an approximation which can't be guaranteed
- MC clustering gives the **best obtainable** jet energy resolution for a specific detector model and reconstruction configuration; Durham clustering gives a *slightly* poorer resolution, as expected for such simple di-jet events
- The ILC would provide an ideal platform for more precise measurements of SM quantities and to probe beyond the SM physics
- Highly granular calorimeters and complex pattern recognition algorithms in Particle Flow reconstruction at the ILD would allow better jet energy resolution than any previous experiment

Any questions?

Number of events remaining after each cut

Energy (GeV)	$E_{mc~diff} \leq 1\%\sqrt{s}$	$E_{mc\ diff} \leq 3\%\sqrt{s}$	$E_{mc~diff} \leq 10\%\sqrt{s}$
40	986	2475	4463
91	1499	3176	4358
200	2047	3437	4585
350	2244	3491	4596
500	2353	3614	4608

Reconstructed jet energy distribution after cuts (MC Clustering) for $\sqrt{s} = 200$ GeV event

Effect of bin width on calculated resolution, MC Clustering

JER with changing bin width

Effect of neutrinos (missing energy), 1000 events

N. McHugh — University of Glasgow — September 5, 2018 — Page 22

Backup Slides 6 2D binning approach, MC Clustering

Jet energy resolution

DES

Reconstructed jet energy distributions - MC Clustering

Reconstructed jet energy distributions - Durham Clustering

Reconstructed jet energy distributions - Total Energy Method

Total Energy Method

Jet Clustering Methods - Resolution

Jet Clustering Methods - Scale

