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The Future of High Energy Physics
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Why the International Linear Collider

(ILC)?

o Complement the physics program of
the LHC by allowing more precise
measurements of the properties of -
particles such as the H and W bosons
and the top quark

o Produce new physics, e.g. search for
further Higgs particles or dark matter
candidates, measure H self coupling

o Technical Specifications: ILC Schematic
* /5 =200 to 500 GeV, future 1 TeV
upgrade

Peak luminosity of 2 x 10%* cm™2s~1
Highly polarised beam for maximising
process cross sections and background
suppression: £80% for e~, £30% for e™
5 Hz bunch train frequency - allows . .
passive cooling of detectors RF Accelarating Cavity
No pileup

Uses superconducting RF cavities for
acceleration - same as FLASH, XFEL
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The International Large Detector (ILD)

o First high energy physics detector capable of
particle flow reconstruction (discussed later)

o The ILD will consist of several sub-detectors:

Vertex detector plus a few layers of Si tracker ILD

" Time Projection Chamber (TPC), giving dE/dx
particle identification - momentum resolution of
0pe /P2 =2x107°GeV !

Highly segmented calorimeter tiles

" electromagnetic: 5mm x 5mm, resolution of

oe/E =10%/+/E(GeV)

hadronic: 30mm x 30mm, resolution of

oe/E =60%/+/E(GeV)

" 3.5T axial B field produced by a large 2
superconducting coil, encased in a yoke - which

functions as a muon detector

Forward region calorimeters for 47 angular coverage

and luminosity measurements via Bhubha scattering

o ILD will be switched with Silicon Detector (SiD)
every few weeks via push-pull system

Yoke/ Muon  HCAL
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Particle Flow Reconstruction

o Approach to calorimetry which improves jet
energy resolution by reconstructing individual
particles rather than just jets

o Made possible by combination of highly granular g;.
o
calorimeters and complex pattern recognition oo
algorithms Charged ;“

" For each particle, an energy measurement can be
taken from only the most accurate detector
subsystem with which it interacts

" Jet composition is generally: 65% charged particles,
25% photons and 10% neutral hadrons

o Result is a collection of Particle Flow Objects
(PFOs)

" Possible to attempt to even identify the type of
particle - important for detector calibration
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Brief Overview: 1

What is a jet?

o Cone of particles, formed by the hadronisation of a quark
or a gluon

o For example, when a qg pair are pulled apart, they
undergo QCD process to form a parton shower, which
then hadronises into two jets

Why do we care about jets?

o Some particles are too short lived to be measured
directly; only possibly to observe their decay products
which can often result in jets

e So, want good jet energy resolution for precise
measurements of e.g. Higgs properties
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Brief Overview: 2

The Z' — qq Event

o Simulate a stationary fictional Z boson with whatever /s
we require, which decays to gqg back to back
o These then decay to form two jets

e Only consider uds to minimise neutrinos (compared to
heavy quark events)

Why Do We Do This?

o Allows us to measure the jet energy resolution and scale
of the detector and reconstruction algorithms, with no
background

o This gives a comparison between different detector
models/reconstruction performances

o Currently used method is an approximation to jet energy
resolution
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Brief Overview: 2

The Z' — qq Event

o Simulate a stationary fictional Z boson with whatever /s
we require, which decays to gqg back to back
o These then decay to form two jets

e Only consider uds to minimise neutrinos (compared to
heavy quark events)

Why Do We Do This?

o Allows us to measure the jet energy resolution and scale
of the detector and reconstruction algorithms, with no
background

o This gives a comparison between different detector
models/reconstruction performances

o Currently used method is an approximation to jet energy
resolution

The aim of this project was to develop a more accurate
method
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Jet Energy Resolution

o Measure of how well we can identify the
difference between two jets of similar
energy

o Calculate based on the width of a
distribution of measured energies, for jets
of the same true energy, as:

. rmsgg
resolution = ————

(1)
meangg
o Where rmsgg, meangg are the rms and
mean of a modified distribution
containing only the central 90% of
measurements
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Jet Energy Scale

o Measure of how accurately our detector — *Ze@ =
measures jets of known energy

250 [~

200 [~

o Easy way to check this is to plot
reconstructed jet energy against true jet

150 [~

Reconstructed jet energy [GeV]

100 [~

energy o ]
o For a well calibrated detector, this plot )
will agree with the line y = x etonorgy (G
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Methods

o Total Energy Method

" Take all PFOs, sum reconstructed energy and divide

by two (Assumption: reconstructed jet energies are
equal)

e Monte Carlo (MC) Clustering

" Begin by looking at MC particles in event simulation,

split initial particles into two jets and then iterate
over these until we have all MC particles in each jet

" This is where most of my work was focused

e Durham Clustering Method

" Define a ‘distance’ between PFOs -

dj = 2min(E7, E7)(1 — cos6j)

Iteratively add particles together until we have only
two jets
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MC Jet Difference Cuts

o We want a distribution of reconstructed energy for a single true (MC) jet energy to
measure jet energy resolution - but simulated events have a spread of true jet

energy (always sum to /s)
" Must apply a cut to eliminate events where jet energy is not close enough to \/s/2

"g 250 =
]
I
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150F 3 ;E) bl T — — — 3
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Emec diff < 3%-/5, 685 events
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Example Event

Consider the following situation for a /s = 100 GeV event
(Epfo total = 98 GeV):

Emc 1 = 50GeV
Erec.mc 1 = 45GeV
Erec,pur. 1 = 49GeV

Emc » = 50GeV
Erec,mc 2 = 53GeV
Erec,pur. 2 = 49GeV
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Final Results - Jet Energy Scale
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Final Results - Jet Energy Resolution

Jet energy resolution, cos(6) < 0.7
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Conclusions

o A fair comparison of the total energy method and jet clustering
methods cannot be obtained
® The total energy method makes an approximation which can't be guaranteed

o MC clustering gives the best obtainable jet energy resolution for a
specific detector model and reconstruction configuration; Durham
clustering gives a slightly poorer resolution, as expected for such
simple di-jet events

e The ILC would provide an ideal platform for more precise
measurements of SM quantities and to probe beyond the SM physics

e Highly granular calorimeters and complex pattern recognition
algorithms in Particle Flow reconstruction at the ILD would allow
better jet energy resolution than any previous experiment

N. McHugh —  University of Glasgow — September 5, 2018 — Page 16 ‘g



N. McHugh

University of Glasgow
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Backup Slides 1

Number of events remaining after each cut

Energy (GeV)  Epc difft < 1%+/S  Emc aif < 3%\/S  Emc aifr < 10%+/s

40 986 2475 4463
91 1499 3176 4358
200 2047 3437 4585
350 2244 3491 4596
500 2353 3614 4608
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Backup Slides 2

Reconstructed jet energy distribution after cuts ( 0 GeV event
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Emc dgift < 3%+/5, 685 events, rmsgo= 3.45 Enme aiff < 1%+/s, 415 events, rmsgp= 3.44
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Backup Slides 3

JER after various cuts
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Backup Slides 4

Effect of bin width on calculated resolution,

JER with changing bin width
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Backup Slides 5

Effect of neutrinos (missing energy), 1000 events

Jet Energy Resolution for MC Clustering
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Backup Slides 6

2D binning approach,

Jet energy resolution
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Backup Slides 7

Reconstructed jet energy distributions -

Reconstructed Jet Energy, no cut (MC Clustering) Reconstructed Jet Energy, E__ . <1% s (MC Clustering)
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Backup Slides 8

Reconstructed jet energy distributions -

Reconstructed Jet Energy, no cut (Durham Clustering) Reconstructed Jet Energy, E__ . <1% (s (Durham Clustering)
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Backup Slides 9

Reconstructed jet energy distributions - Total Energy Met

<1% /s (Total Energy Method)
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Total Energy Method

Jet energy resolution
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Backup Slides 11

Jet Clustering Methods - Resolution

Jet energy resolution
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Jet Clustering Methods - Scale
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