Measurement of Photon Efficiencies in Radiative Z Decays

Fionn Bishop, University of Cambridge Supervisor: Kurt Brendlinger

Introduction

Why do we measure photon efficiencies?

- Many important physics processes involve photons, e.g. H→γγ, BSM decays
- Also background photons from hadronic decays/jets faking photons
- Remove most background using isolation and ID cuts - Also removes some signal
- Must know how many signal events are excluded
- Efficiency ε = Fraction of events retained when making a cut

Introduction

How do we measure efficiencies?

- ε measured in standard candle processes, such as Z→ℓℓγ
- Could be calculated using Monte Carlo (MC), but large uncertainties and ultimately a data-driven measurement is required
- Measurement performed before, but with fractional uncertainties up to 10%
 → Potential for improved measurement
 - Consider additional backgrounds
 - Utilise control region to increase background statistics
- Measure ϵ_{ID} and ϵ_{TOT}

DESY. Measurement of Photon Efficiencies in Radiative Z Decays | Fionn Bishop

Backgrounds

	ττj	tfγ	WZ
Δε _{ID} /ε _{ID}	0.4%	0.03%	0.01%
Δε _{τοτ} /ε _{τοτ}	2%	0.3%	0.05%
Bin	10 <p<sub>T<15 GeV</p<sub>	60 <p<sub>T<80 GeV</p<sub>	

Estimate of the maximum fractional error on ϵ as a result of ignoring backgrounds

 $\rightarrow \tau \tau j$ significant at low $p_T{}^\gamma$

Using range $80 < m_{II\gamma} < 100$ GeV: In the bin with the highest fraction of each source of background, $\Delta\epsilon$ when the number of signal events was increased by the number of background events was calculated.

Overview

- ϵ depends on p_T^{γ} , $|\eta^{\gamma}| \rightarrow$ Calculate in bins
- $\epsilon = N_{s,cut} / N_s$ Determine number of signal events before and after cut
- Existing method:
 - Signal (Z→ℓℓγ) and background (Z→ℓℓj) templates from MC
 - Fit signal and background templates to data to determine the purity
 - Use purity and number of events before and after cut to evaluate ε

Reducible Background

- $Z \rightarrow \ell \ell j$ and $Z \rightarrow \tau \tau j$
- Previously (MC) low available statistics in background
- Increase statistical power by taking reducible background template from data in antiisolation, anti-ID control region (CR) and using all |η^γ| bins
 - Large number of reducible background events
 - Small amount of signal + irreducible background contamination
 - Assume $m_{II\gamma}$ for background unbiased with respect to isolation and $|\eta^{\gamma}|$
 - True for $|\eta^{\gamma}|$
 - Not true for isolation \rightarrow Don't use events with very low isolation
 - Includes reducible backgrounds missing in MC

Reducible Background

- Fit CR data to a double-sided crystal ball (DSCB) function to reduce statistical fluctuations
- Gaussian core, power-law tails
- Exclude range [88,93] GeV to avoid contamination

DESY. Measurement of Photon Efficiencies in Radiative Z Decays | Fionn Bishop

Page 8

Extended Maximum Likelihood Fit

- Signal and irreducible background from MC
- Fit signal + background to data to determine number of signal events
- Treat irreducible background as fixed component scaled by $\sigma_{\text{data}}/\sigma_{\text{MC}}$
- |η^γ| bins grouped in fit to further improve statistics
- Fit in range [60,125] GeV to utilise sidebands to accurately determine background component
- Calculate ε using range [80,100] GeV

Results

DESY. Measurement of Photon Efficiencies in Radiative Z Decays | Fionn Bishop

[Error bars show statistical uncertainty only]

Uncertainties

- Statistical
 - Evaluated using binomial approximation
 - Fractional uncertainty 1-5% Larger at high p_T^{γ}
- Background shape
 - Could estimate as difference between efficiency from a high-tail fit (90-125 GeV) and low-tail fit (60-100 GeV)
- Detector geometry
 - $\Delta \epsilon_{ID}/\epsilon_{ID} \le 7\%$ for $p_T^{\gamma} \le 25$ GeV, negligible elsewhere (ATL-COM-PHYS-2017-264)
- Irreducible background cross section
 - Extremely small
 - Could be estimated by varying cross sections within uncertainties

Further Work

Reducible background modelling

- DSCB does not model shape well for $10 < p_T^{\gamma} < 20 \text{ GeV}$
- Bernstein polynomials, triple Gaussian

Further Work

Identification of missing background

- MC is systematically below data in the range $10 < p_T^{\gamma}$ $< 20 \text{ GeV}; m_{II\gamma} < 80 \text{ GeV}$
 - Discrepancy too large to be explained by poor fitting of DSCB to control region data
 - Irreducible background not yet considered:
 - ττγ
 - May impact fit

Conclusions

- There are significant sources of background other than $Z \rightarrow \ell \ell j$
- Some background in the range 10 < $p_T{}^\gamma$ < 20 GeV; $m_{II\gamma}$ < 80 GeV has not been identified
 - Most likely to be $\tau \tau \gamma$
 - May have a significant impact on measurement
- The use of control region data as a reducible background template is feasible and improves statistical power
 - Fitting to smooth function reduces statistical fluctuations
 - This fitting can be improved

Event selection

- Two same-flavour, opposite sign leptons and one photon
- $40 < m_{\parallel} < 83 \text{ GeV} \text{Reduces ISR background } Z \rightarrow \ell \ell j$
- $\Delta R_{\gamma,l} > 0.4$ for electrons, > 0.2 for muons Reduces impact of lepton energy deposition on photon isolation
- Only using events which pass an unprescaled single lepton or dilepton trigger and associated $p_T^{\ l}$ cuts

Isolation Cuts

- Isolated == FixedCutLoose
 - $E_T^{cone20}/p_T^{\gamma} < 0.065$ (calorimeter isolation) & $p_T^{cone20}/p_T^{\gamma} < 0.05$ (track isolation)
- Control region
 - $0.20 < E_T^{cone20}/p_T^{\gamma} < 1.00 \& 0.15 < E_T^{cone20}/p_T^{\gamma} < 1.00$
 - Fails tight ID

CR Data / MC comparison at varying isolation – $10 < p_T^{\gamma} < 15$ GeV

DESY. Measurement of Photon Efficiencies in Radiative Z Decays | Fionn Bishop

CR/MC comparison at varying p_T^{γ}

DESY. Measurement of Photon Efficiencies in Radiative Z Decays | Fionn Bishop