Current LHC sensitivity to heavy Higgs decays into electroweakinos in the MSSM

Thea Engler

University of Freiburg

06/09/2018

DESY Theory Group supervised by Georg WEIGLEIN, Tim STEFANIAK, Emanuele BAGNASCHI

Outline

Supersymmetry

Benchmark scenario

LHC searches for electroweakinos

Method and tools

Results

Minimal Supersymmetric Standard Model (MSSM)

Supersymmetry: bosons \leftrightarrow fermions

Neutralinos $\tilde{\chi}_{i}^{0}$ (i=1,2,3,4): mixtures of $\tilde{\gamma}, \tilde{Z}, \tilde{h}_{1}^{0}, \tilde{h}_{2}^{0}$ Charginos $\tilde{\chi}_{i}^{\pm}$ (j=1,2): mixtures of $\tilde{W}^{\pm}, \tilde{h}^{\pm}$

 $\widetilde{\chi}_1^0$ is the lightest supersymmetric particle (LSP) and stable.

MSSM Higgs sector

Two Higgs doublets \rightarrow 5 physical Higgs states

- ► *h*, *H*: CP-even Higgs boson
- A: CP-odd Higgs boson
- ► H[±]: charged Higgs boson pair

light Higgs boson $h \approx$ SM-like Higgs boson (m_h \approx 125 GeV)

important parameters for our analysis: M_A , $\tan\beta = rac{v_2}{v_1}$

MSSM Higgs benchmark scenario (m_h^{mod+})

MSSM Higgs benchmark scenario (m_h^{mod+})

- ► $M_2 = \mu = 200 \text{ GeV} \rightarrow \text{light neutralinos and charginos}$ $(M_{\tilde{\chi}_1^0} \approx 88 \text{ GeV}, M_{\tilde{\chi}_2^0} \approx M_{\tilde{\chi}_1^\pm} \approx 160 \text{ GeV}),$
- high number of H/A decays to electroweakinos.

Branching Ratio of the heavy Higgs decaying into gauginos

Successive decays: $\tilde{\chi}_1^{\pm} \rightarrow W^{\pm} \tilde{\chi}_1^0 \ (100\%), \quad \tilde{\chi}_3^0 \rightarrow Z \tilde{\chi}_1^0 \ (100\%), \quad \tilde{\chi}_1^0 \ \text{stable}.$

promising collider signature:

2 leptons + missing transverse energy ($\mathcal{E}_{\mathcal{T}}$)

Branching Ratio of the heavy Higgs decaying into gauginos

$\begin{array}{ll} \mbox{Successive decays:} \\ \tilde{\chi}_1^\pm \to W^\pm \tilde{\chi}_1^0 \ (100\%), & \tilde{\chi}_2^0 \to Z \tilde{\chi}_1^0 \ (100\%), & \tilde{\chi}_1^0 \ {\rm stable.} \end{array}$

promising collider signature:

2 leptons + missing transverse energy (E_T)

Branching Ratio of the heavy Higgs decaying into gauginos

$\begin{array}{ll} \mbox{Successive decays:} \\ \tilde{\chi}_2^0 \rightarrow Z \tilde{\chi}_1^0 \mbox{(100\%)}, & \tilde{\chi}_3^0 \rightarrow Z \tilde{\chi}_1^0 \mbox{(100\%)}, & \tilde{\chi}_1^0 \mbox{ stable.} \end{array}$

promising collider signature:

4 leptons + missing transverse energy (E_T)

LHC searches for neutralinos and charginos ("EW-inos") Production modes: $pp \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-$, $pp \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_2^0$, $pp \rightarrow \tilde{\chi}_1^\pm \tilde{\chi}_2^0$ CMS Preliminary 35.9 fb⁻¹ (13 TeV) $\pi_{\chi_1^0} \left[\text{GeV} \right]$
$$\begin{split} & pp \to \widetilde{\chi}_1^{\pm} \widetilde{\chi}_2^0 \to W Z \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 \\ & \fbox{Observed} \pm 1 \ \sigma_{theory} \qquad \text{NLO-NLL excl.} \end{split}$$
upper limit on cross section [pb] Expected ± 1 σ_{experiment} Ζ $\cdots \widetilde{\gamma}_1^0$ 200 10⁻¹ $\cdots \widetilde{\chi}_1^0$ $\widetilde{\chi}^{:}_{\scriptscriptstyle 1}$ 100 10-2 W± 95% CL $M_{\tilde{\chi}_1^0} \approx 88 {
m ~GeV}$ 100 300 600 400 500 $m_{\widetilde{\chi}_{-}^{\pm}} = m_{\widetilde{\chi}_{-}^{0}}$ [GeV] $M_{\tilde{\chi}_2^0} \approx M_{\tilde{\chi}_1^\pm} \approx 160 \text{ GeV}$ [CMS, 1709.05406]

promising signature: multiple leptons $(2,3,4..) + \mathcal{E}_T$

Aim of this project

- 1. Do LHC EW-ino searches exclude the m_h^{mod+} scenario?
- 2. What happens if the additional contribution from heavy Higgs decays to EW-inos is taken into account?

Procedure [for 1 and 2]:

- estimate number of signal events (s) for m_h^{mod+} parameter points (with Monte-Carlo simulation),
- compare with experimental upper limit on number of signal events (slimit):

$$r \equiv \frac{s}{s_{\text{limit}}},$$
 $r \leq 1 \Rightarrow \text{allowed},$
 $r > 1 \Rightarrow \text{excluded}$

Computer tools

Results

• Most sensitive analysis: $4\ell + \not E_T$ signal region,

[CMS,1709.05406]

Results

• Most sensitive analysis: $4\ell + \not{E}_T$ signal region,

[CMS,1709.05406]

• Exclusion at tan $\beta \sim 10$ -15 influenced by Higgs contribution: H/A decays to $\tilde{\chi}_2^0 \tilde{\chi}_2^0$ and $\tilde{\chi}_2^0 \tilde{\chi}_3^0$ important (4 ℓ final state!)

Results

• Most sensitive analysis: $4\ell + \not{E}_T$ signal region,

[CMS,1709.05406]

- Exclusion at tan $\beta \sim 10$ -15 influenced by Higgs contribution: H/A decays to $\tilde{\chi}_2^0 \tilde{\chi}_2^0$ and $\tilde{\chi}_2^0 \tilde{\chi}_3^0$ important (4 ℓ final state!)
- Still large statistical uncertainty despite 1.5M events per parameter point.

Conclusions & Outlook

- LHC is sensitive to m_h^{mod+} for the direct electroweakino production and nearly excluded by the direct EW-ino searches.
- When heavy Higgs decay into EW-ino, are additionally taken into account: tendency of increased r-value for M_A = 352 GeV and tan β ~ 10 − 15.

Next steps

Consider full $(M_A, \tan \beta)$ plane, Consider recently updated MSSM Higgs benchmark scenarios, [1808.07542] NLO corrections on production (expected increase ~ 20%).