Plasma Density Profile From Laser Diagnostics In FLASHForward

DESY SUMMER STUDENT PROJECT

Student - Lewis Dickson Supervisor - Dr Alexander Knetsch September 2018

Presentation Outline

01 Plasma Wakefield Acceleration

02 FLASHForward

03 **Project Motivations and Outline**

05 Laser induced Plasma Production

- 06 Code Outline
- Motor Control
- Realignment
- Data Analysis
- 07 Results
- Laser Characteristics
- Plasma Density Profile
- 04 Longitudinal Laser Diagnostics

08 Summary and Next Steps

Background

Plasma Wakefield Acceleration

Theory

- Using particle beam to excite wake in plasma medium
- Ions stay approximately static whilst lighter electrons move in beam's repulsive field
- Large accelerating gradients of ≈10 GV/m
- Successful wakefield production in FLASHForward

Johanna L. Miller - Precision plasma wakefield acceleration (2014)

FLASHForward

- DESY's contribution to PWFA
- 1.25GeV FLASH beam as drive for plasma wake
- Investigate issues with PWFA
- Demonstrate PWFA electron beam being used for free electron laser
- Complex setup my project focuses on longitudinal laser diagnostics and plasma chamber

Project Motivation and Aims

Motivations

- Large divergence in accelerated electrons
- Possible to control divergence through tailored plasma profile
- Neutral plasmas can drive ultrarelativistic electron beams
- Understanding of plasma density helps with controlling beam

Aims

- Measure intensity of ionising laser
- Characterise laser beam and beam quality
- Calculate plasma density distribution in plasma cell
- Make MATLAB script to do this automatically and in a user-friendly way

Longitudinal Laser Diagnostics

Purpose

- Cannot measure laser profile inside plasma cell
- Split laser beam and use same travel distance
- Mobile delay stage allows scanning over longitudinal laser direction
- Measure intensity profile with camera

Set-up

- OWIS motor for delay stage position
- 2 pico motors for alignment both with XY axis mobility
- Camera for laser measurements

Laser Induced Plasma Creation

Tunneling Ionisation

- Laser reduces the experienced electric field of the atomic electron
- Reduced potential increases
 probability of electron tunneling

- ADK rate models tunneling ionisation probability per unit time
- Electric field dependent calculation
- Product of rate and Gaussian wave packet integrated over pulse time to
 DESY.

Alexander Knetsch, Acceleration of laser-injected electron beams in an electron-beam driven plasma wakefield accelerator

$$W(s^{-1}) = 1.52 * 10^{15} \frac{4^{n^*\xi_i(eV)}}{n^*\Gamma(2n^*)} \left(20.5 \frac{\xi_i^{\frac{3}{2}}(eV)}{E[GV/m]}\right)^{2n^*-1} \times exp\left(-6.83 \frac{\xi_i^{\frac{3}{2}}(eV)}{E[GV/m]}\right)$$

MATLAB Script Outline

Intensity Profile Measurements

- Controlling OWIS motor to move delay stage along beam path
- Controlling PICO motor for reallignment

DESY.

 Reading intensity image from camera

Data Analysis

- Laser Characteristics: Intensity images, X\Y laser projections, σ_x/σ_y values of beam, Beam parameter product and M² Value
- Plasma: Plasma Density Profile

Laser Characteristics Code

XY Projection and σ_x/σ_y

- XY Projection from simple sum of columns has been scaled in image
- σ_x/σ_y calculated as standard deviation in x and y beam direction

M² Fit

- Value always ≥ 1. Value of 1 is perfect beam.
- Calculate the D4σ value: zdependent positionally weighted width
- Fit parameters to:

 $W^{2}(z) = W_{0}^{2} + M^{4}(\lambda/\pi W_{0})^{2}(z-z_{0})^{2}$

• Where $W^2(z) = (D4\sigma(z))^2/2$

Results

Laser Characteristics

X/Y Projection of Beam

- Y axis has close to Gaussian distribution
- X axis is clearly smeared out as seen in image and projection

$\sigma x/\sigma y$ Values of Beam

- Fairly consistent beam width over scan length
- Values expected to have minimum at beam waist but this is not seen. This behavior effects BPP and M² calculation due to poor parameters for fit

M² Value

 Calculated independently for X and Y directions due to asymmetry

Plasma Density Profile

3D Plasma Density Distribution

• Shows plasma density:neutral gas ratio

Single Slice

 Clear similarity to laser intensity as expected

DESY.

Summary and Future Research

Summary

- Data taken correctly and automatically over set range
- Data converted to true values using measured beam energies
- Analysis on beam characteristics and plasma density successfully completed
- Multifunction code created for future investigation in PWFA experiments

Future Research

- Use secondary PICO motor for two point alignment
- Calculate ADK rate for hydrogen/helium mix as required for future injection techniques
- Model laser dispersion through plasma to gain more realistic plasma density

Contact

DESY. Deutsches Elektronen-Synchrotron

www.desy.de

Lewis Dickson FLA Idickson@desy.de Code available - https://github.com/wisky02/DESY