Crossover from fully coherent analytical approach to Maxwell-Bloch equations

Stasis Chuchurka, Andrei Benediktovitch, Nina Rohringer

FS-TUXS

Laser-like amplified spontaneous emission

Nina Rohringer, Nature, 481(7382):488, 2012.

Ordinary fluorescence and superradiance

Correlation functions

Equal-position correlation function of field

$$K(\vec{r}, t_1, t_2) = \langle \hat{A}^{(+)}(\vec{r}, t_1) \hat{A}^{(-)}(\vec{r}, t_2) \rangle.$$

Intensity

$$I(\vec{r},t) \sim \langle \hat{A}^{(+)}(\vec{r},t)\hat{A}^{(-)}(\vec{r},t)\rangle = K(\vec{r},t,t).$$

Wiener–Khinchin theorem leads to $I(\vec{r}, \omega)$.

Equal-time correlation function of 2-level atoms

 $S(\vec{r}_1, \vec{r}_2, t) = \langle \hat{\rho}_{12}(\vec{r}_1, t) \hat{\rho}_{21}(\vec{r}_2, t) \rangle.$

 $\hat{\rho}_{12}(\vec{r},t)$ is a density matrix element related to transition from an excited state to ground one.

2-level Maxwell Bloch equations

Classical Maxwell equation with polarization

$$\frac{\partial A\left(z,\tau\right)}{\partial z} = gP\left(z,\tau\right),$$

Equations for population inversion and polarization

$$\begin{split} \sigma(z,\tau) &= \frac{1}{2} \left(\rho_{22}(z,\tau) - \rho_{11}(z,\tau) \right), \\ \frac{\partial \sigma\left(z,\tau\right)}{\partial \tau} &= - \underbrace{\Gamma_{sp} \left(\sigma\left(z,\tau\right) + \frac{1}{2} \right)}_{\text{decay}} - \gamma P\left(z,\tau\right) A\left(z,\tau\right), \\ \frac{\partial P\left(z,\tau\right)}{\partial \tau} &= - \underbrace{\frac{\Gamma_{sp} P\left(z,\tau\right)}{2} + \gamma \sigma\left(z,\tau\right) A\left(z,\tau\right).}_{\text{decay}} \end{split}$$

Existing theoretical approach

Maxwell – Bloch with semi-phenomenological noise source terms

O. Larroche et al, PRA 62, 043815 (2000)

$$\frac{\partial P\left(z,\tau\right)}{\partial \tau} = \ldots + \text{noise term} \quad \rightarrow \quad \left< \text{observables} \right>$$

Incorrect description of initial stage

Different noise terms for different effects!

First principles formalism

Spontaneous emission term atomic observables $\frac{\partial S(z_1, z_2, \tau)}{\partial \tau} = -\Gamma_{sp} S(z_1, z_2, \tau) + \frac{3\Delta o}{8\pi} \Gamma_{sp} n_1 \left(\sigma(z_1, \tau) \int_{0}^{z_1} dz' e^{-\frac{\kappa}{2}(z_1 - z')} S(z', z_2, \tau) + 1 \leftrightarrow 2 \right)$ Stimulated emission $+\frac{3\Delta o}{8\pi}\Gamma_{sp}\left(\sigma(z_1,\tau)\rho_{ee}(z_2,\tau)e^{-\frac{\kappa}{2}(z_2-z_1)}+1\leftrightarrow 2\right)$ Spontaneous emission Quantum effects are negligible Spontaneous emission threshold term plays significant role $S(z_1, z_2, \tau) = P(z_1, \tau)P(z_2, \tau)$ **Correlation** function Use Maxwell Bloch equations treatment to obtain $P(z,\tau), \sigma(z,\tau), A_P(z,\tau),$

8

 $\varepsilon = 0.001$

Numerical results Atom correlation function

Conclusions

The formalism based on correlation functions is presented.

The optimization technique based on Maxwell Bloch equations is proposed.

The code that runs optimized algorithm for 2-level system is written.

Also...

The code for n-level systems is written.

A lot of analytical results for 2-level and n-level systems are obtained.

Thank you for your attention!

Field correlation function

Relative contribution of spontaneous emission for atomic observables

In case of linearized equations

17

Algorithm

Step 1

time

Algorithm

time

 $K(z_0,\tau_1,\tau_2) \to A(z_0,0)$