QCD background fits in eta bins

V. Danilov, K. Wichmann

QCD fit function

$$f_{\text{QCD}}(E_{\text{T}}^{\text{miss}}) = E_{\text{T}}^{\text{miss}} \exp\left(-\frac{\text{a3 a1}}{\sigma_0} \frac{E_{\text{T}}^{\text{miss2}}}{\sigma_0 + \sigma_1} \frac{\text{a2}}{E_{\text{T}}^{\text{miss2}}}\right)$$

- Fitted simultaneously in control and signal region
- For nominal results sigma, the same for both regions

For systematic uncertainties sigma, different for different regions

How does fits look like?

Consider various fits and binnings

- 1) 0 < MET < 150 GeV, 2 GeV bins, a1 for control and signal different
- a1_control = a1_signal
 - 1) MET 0-150, 1 GeV bins
 - 2) MET 0-150, 2 GeV bins
 - 3) MET 0-150, 3 GeV bins
 - 4) MET 0-150, 5 GeV bins
 - 5) MET 0-100, 1 GeV bins
 - 6) MET 0-100, 2 GeV bins
 - → Look at a1, a2, a3 params in eta bins

Look at a1, all fits

 Fit 1) with a1_signal and a1_control free NOT good (here just examples) → not considered any more

Look at a1, control & signal regions

- MET 150, 5 bins → full fit differs from others, large fluctuations in eta bins
- MET 100 → reasonable
- MET 150, 2 / 3 bins → most stable

Look at a2, control region

- MET 150, 5 bins → full fit differs from others, large fluctuations in eta bins
- MET 100 → reasonable
- MET 150, 2 / 3 bins → most stable

Look at a2, signal region

- MET 150, 5 bins → full fit differs from others, large fluctuations in eta bins
- Rest varies a lot ...

Look at a3, control region

- MET 150, 5 bins → full fit differs from others, large fluctuations in eta bins
- MET 100 → reasonable
- MET 150, 2 / 3 bins → most stable

Look at a3, signal region

- MET 150, 5 bins → full fit differs from others, large fluctuations in eta bins
- rest → reasonable

- Conclusions for now?
 - don't consider MET 150 with 1 or 5 GeV bins
 - Check other bins → other parameters, total cross section,
 asymmetries

4 fits, total cross sections

- Inclusive cross sections from latest SMP-16-013 note
 - NNLO calculations, FEWZ, NNPDF3.0
 - W+: 11392 +- 296 pb
 - W-: 8369 +- 229 pb
 - Measurement
 - W+ to mu+: 11534 +- 12 (stat) +-262 (syst) +- 311 (lumi)
 - W- to mu-: 8493 +- 8 (stat) +-173 (syst) +- 229 (lumi)

4 fits, total cross sections

- Inclusive cross sections from latest SMP-16-013 note
 - NNLO calculations, FEWZ, NNPDF3.0
 - W+: 11392 +- 296 pb
 - W-: 8369 +- 229 pb
 - Measurement
 - W+ to mu+: 11534 +- 12 (stat) +-262 (syst) +- 311 (lumi)
 - W- to mu-: 8493 +- 8 (stat) +-173 (syst) +- 229 (lumi)

- Seems like we have too many total signal events from fits?
 - Check sum from eta bins
- MET 100 seems to be doing better here?

total events .vs. summed events from eta bins

- Seems like there is less events from sum over eta-bin fits than from fit in whole eta range
- Depends on binning

SUM(eta)

TOTAL

Where this is coming from?

total events .vs. summed events from eta bins

Signal

Other BG

QCD BG

