# Frequentist Hypothesis Testing with ATLAS at the LHC

Daniel Rauch

July 9th, 2018 – HEP Students' Seminar



Particles, Strings, and the Early Universe Collaborative Research Center SFB 676





- Motivation: Why all that?
- Theory Intro: Statistics basics
- Stats by Guts: Statistics Techniques for Searches at the LHC
- Retrospective: The Higgs Discovery in LHC Run 1
- → The Gory Details: A few test statistics, CLs, Feldman-Cousins and all that
- Or And finally: The Look-Elsewhere Effect

→ Or just old physics and 'bad luck' conspiring to fake new physics? → Just how sure are we?



### **Bayes Theorem and the Likelihood.**

- Conditional probability P(A|B)
- **Bayes' theorem**



- Keep in mind for later: Likelihood =  $L(\text{theory}) = P(\text{data}|\text{theory}) \neq P(\text{theory}|\text{data})$ →
  - The likelihood is a function of the parameters of the theory •

### **Bayesian Approach to Hypothesis Testing in a Nutshell.**

- There are two schools of thought: Frequentism and Bayesianism
  - Frequentist definition of probability: Probability is the relative frequency after an infinite number of trials
  - Bayesian definition of probability: How much money are you willing to bet on the outcome?
- Bayesian hypothesis testing

$$\begin{split} P(\vec{\theta}|\{\vec{x}_i\}) &= \frac{P(\{\vec{x}_i\}|\vec{\theta}) \cdot P(\vec{\theta})}{P(\{\vec{x}_i\})} = \frac{P(\{\vec{x}_i\}|\vec{\theta}) \cdot P(\vec{\theta})}{\int P(\{\vec{x}_i\}|\vec{\theta}) \cdot P(\vec{\theta}) \ d\vec{\theta}} \\ & \underset{\text{theory data}}{} \end{split}$$

- Choose priors, use Bayes' theorem and calculate  $P(\text{theory}|\text{data}) = P(\vec{\theta}|\{\vec{x}_i\})$ 
  - **Common criticism:** choice of priors is subjective
- Find the interval / region where P(theory|data) is max  $\rightarrow$  credible intervals
  - Smallest, central, symmetric intervals / regions possible
- → This procedure, however, is not possible in the frequentist approach! → More complicated conceptually!

Very nice lectures on Bayesian Data Analysis by

Christian Graf @ iCSC 2018 → http://cern.ch/go/HC9w

#### → Signal strength

- Global factor that multiplies the signal cross section
- $\mu = 0$  : no signal at all
- $\mu = 1$  : signal as expected from the theory



 $\mu = \sigma^{(\text{signal})} / \sigma^{(\text{signal})}_{\text{theory}}$ 

### **Discovery vs. Limit Setting vs. Measurement.**



### **Basics of Hypothesis Testing.**

- →  $H_0$ : null hypothesis → e.g. standard model  $H_1$ : alternative hypothesis → e.g. new physics
  - Can the experimental data be explained with known physics or are we forced to believe in new physics?
- → Cut on the critical value  $q_{crit}$  of a test statistic
  - Type-1 error  $\alpha$ 
    - Wrongly reject the null hypothesis
    - $\circ \quad 1-lpha$  is the confidence level
  - Type-2 error  $\beta$ 
    - Wrongly **accept** the null hypothesis
    - $\circ \quad \mathbf{1}-oldsymbol{eta}$  is called power

#### Neyman-Pearson lemma

- Likelihood ratio is the most powerful test for a desired confidence level  $1-\alpha$ 



### **Basics of Hypothesis Testing.**

- →  $H_0$ : null hypothesis → e.g. standard model  $H_1$ : alternative hypothesis → e.g. new physics
  - Can the experimental data be explained with known physics or are we forced to believe in new physics?

 $L(\mu, ec{ heta}) = P(\{ec{x}_i\}|$ 

data

 $q_{
m cut}$   $q_{
m obs}$ 

- Likelihood function
  - Fit the model to the data
  - The likelihood function is a measure for how good the model describes the data!
- Need one single number to compress all information and decide between the two hypotheses → test statistic

e.g.  

$$q = -2 \ln \frac{L(\{\vec{x}_i\} | 0, \hat{\theta}(0))}{L(\{\vec{x}_i\} | \hat{\mu}, \hat{\theta}(\hat{\mu}))}$$
Good agreement  $\rightarrow q \approx 0$   
Bad agreement  $\rightarrow q \gg 0$   
Confidence  
level (e.g. 95%)

 $\alpha = 1 - CI$ 

signal strength

theory & model

parameters

 $\boldsymbol{q}$ 

### **Brazil Plots - From Speculation to Certainty.**

- Confidence level: Amount of confidence / trust in the statement that is made
- p-value: Chance of an observation at least as extreme as the one that was made to come from a background fluctuation faking the signal
- → Signal strength: Global factor that multiplies the signal cross section
- Limits: Parameter values that mark the transition between the ranges that are allowed / excluded by data



### **Retrospective: Higgs Searches at the LHC - Full 2011 / 7 TeV Dataset.**

- Scan across different values of the mass parameter
- Combination of many different channels
- Dataset
  - Full 2011 / 7 TeV
- Local significances observed (expected)
  - ATLAS:  $2.9\sigma$  ( $2.9\sigma$ )
  - CMS:  $3.1\sigma~(\approx 2.9\sigma?)$



Frequentist Hypothesis Testing | Daniel Rauch | July 9th, 2018 | Page 11

### **Retrospective: Higgs Searches at the LHC – Discovery in Summer 2012.**

- Scan across different values of the mass parameter
- Combination of many different channels
- Dataset
  - Full 7 TeV / 2011
  - First 6/fb of 8 TeV / 2012
- Local significances observed (expected)
  - ATLAS: 5.9 $\sigma$  (4.9 $\sigma$ )
  - CMS:  $5.0\sigma$  (5.8 $\sigma$ )



Frequentist Hypothesis Testing | Daniel Rauch | July 9th, 2018 | Page 12

#### Nuisance parameters

- All parameters other than the parameter of interest (POI), auxiliary parameters that are needed to adjust the model
- Their precise values are not of primary interest
- Make the model more flexible and adjustable
- Reflect our imperfect knowledge / ignorance about many parameters
- e.g. related to luminosity or contributions from different background processes

#### Coverage

- How often does the measurement contain the true value?
- Property of the statistics method / procedure, not the individual measurement(s)!



### More Vocabulary.

- → **Pull** (  $\rightarrow$  "pull distribution")
  - How were a nuisance parameter and its uncertainty changed by the fit?

#### → Impact

- **Pre-fit:** Fix a single parameter at  $1\sigma_{\text{prefit}}$  above / below its best-fit value
- **Post-fit:** Fix a single parameter at  $1\sigma_{postfit}$  above / below its best-fit value
- Then fit all remaining parameters and see how POI changes

 $\theta_0$ 

- $\theta_0$  Pre-fit parameter value
- $\hat{\theta}$  Post-fit parameter value
- $\Delta \theta$  Pre-fit parameter uncertainty
- $\Delta \hat{\theta}$  Post-fit parameter uncertainty



### LHC-Era Test Statistics.

- $\rightarrow$  Idea: Profiling of nuisance parameters  $\rightarrow$  asymptotic formulae for distributions of test statistics
- Different test statistics for the different use cases

| symbol           | purpose       | rejection region                                       | signal  |
|------------------|---------------|--------------------------------------------------------|---------|
| $t_0$            | discovery     | two-sided                                              | + / -   |
| $q_0$            | discovery     | one-sided                                              | +       |
| $t_{\mu}$        | limit setting | two-sided $(\rightarrow \text{ confidence intervals})$ | + / - ( |
| $	ilde{t}_{\mu}$ | limit setting | two-sided $(\rightarrow \text{ confidence intervals})$ | +       |
| $q_{\mu}$        | limit setting | one-sided $(\rightarrow \text{ upper limits})$         | + / -   |
| $	ilde{q}_{\mu}$ | limit setting | one-sided $(\rightarrow \text{ upper limits})$         | +       |

 $\int t_0 = -2 \ln \frac{L(0, \hat{\theta}(0))}{L(0, \hat{\theta}(0))}$ 

One-sided / capped test statistic

 $q_0 = \begin{cases} -2\ln\frac{L(0,\hat{\theta}(0))}{L(\hat{\mu},\hat{\theta}(\hat{\mu}))} & \text{if } \hat{\mu} \ge 0\\ 0 & \text{if } \hat{\mu} < 0 \end{cases}$ 

• Only upwards deviations can lead to rejection of the null hypothesis

Two-sided / uncapped test statistic

$$t_0 = -2 \ln \frac{L(0, \hat{\theta}(0))}{L(\hat{\mu}, \hat{\theta}(\hat{\mu}))}$$

• Both upwards and downwards deviations can lead to rejection of the null hypothesis



Frequentist Hypothesis Testing | Daniel Rauch | July 9th, 2018 | Page 16

### LHC-Era Test Statistics – Example: Discovery.

p-Value: What is the probability to see an excess of events at least as large as the one we observe in the absence of the signal, i.e. just from a background fluctuation?



arXiv:1007.1727 [physics.data-an]

One-sided rejection region

$$q_{\mu} = \begin{cases} -2\ln\frac{L(\mu,\hat{\theta}(\mu))}{L(\hat{\mu},\hat{\theta}(\hat{\mu}))} & \text{if } \mu \ge \hat{\mu} \\ 0 & \text{if } \mu < \hat{\mu} \end{cases}$$

- Reject null hypothesis if hypothesised  $\mu$  is significantly larger than best-fit  $\hat{\mu}$
- Sublety
  - Here the signal may be both positive or negative
  - This may lead to the exclusion of the null hypothesis if downwards fluctuation of the background
- > Try different hypothetical signal strengths  $\mu$  until the transition between rejecting and accepting the null hypothesis is found
- This then is the measured upper limit



#### Motivation / problem

- When the expected sensitivity is very low, a downward fluctuation of the background may result in rejection of the null hypothesis  $\rightarrow$  false signal claim
- This is precisely the sublety mentioned on the previous slide!
- The method by Feldman and Cousins
  - Restrict the fitted signal strength to  $\hat{\mu} \geq 0$  when evaluating the likelihood ratio

$$\tilde{q}_{\mu} = \begin{cases} -2\ln\frac{L(\mu,\hat{\theta}(\mu))}{L(\hat{\mu},\hat{\theta}(\hat{\mu}))} & \text{if } \mu \ge \hat{\mu} \text{ and } \hat{\mu} \ge 0\\ -2\ln\frac{L(\mu,\hat{\theta}(\mu))}{L(0,\hat{\theta}(0))} & \text{if } \mu \ge \hat{\mu} \text{ and } \hat{\mu} < 0\\ 0 & \text{if } \mu < \hat{\mu} \end{cases}$$

#### The CLs method

- Increase the p-value to make rejection
   of the null hypothesis less likely
- Reject the null hypothesis if

$$CL_{s} = \frac{CL_{s+b}}{CL_{b}} < \alpha$$

with

$$\operatorname{CL}_{\mathbf{s}+\mathbf{b}} = p_{\mu} = \int_{q_{\mu,\mathrm{obs}}}^{\infty} f(q'_{\mu}|\boldsymbol{\mu}) \, dq'_{\mu}$$

$$\mathbf{CL}_{\mathbf{b}} = \int_{q_{\mu,\mathrm{obs}}}^{\infty} f(q'_{\mu}|\mathbf{0}) \, dq'_{\mu}$$

### **Expected Limits.**

- So far: Only observed p-values and limits →
  - Only need  $f(q_{\mu}|\mu)$ , but not  $f(q_{\mu}|\mu' \neq \mu)$ •
- Idea: Generate pseudo data / toys, find median p-values as well as 68% and 95% percentiles
  - Expected sensitivity for discovery •
    - In the absence of signal:  $p_0 = \int_{-\infty}^{\infty} f(q_0 | \mathbf{0}) dq_0$  $r^{\infty}$

• In the presence of signal: 
$$p_0 = \int_{q_{0,toy}} f(q_0|\mathbf{1}) dq_0$$

- Expected upper limits: •

In the absence of signal:  $p_{\mu} = \int_{q_{\mu,toy}}^{\infty} f(q_{\mu}|\mathbf{0}) dq_{\mu}$ In the presence of signal:  $p_{\mu} = \int_{q_{\mu,toy}}^{\infty} f(q_{\mu}|\mathbf{1}) dq_{\mu}$ 

- **Now: Expected** p-values and limits
  - Now also need  $f(q_{\mu}|\mu' \neq \mu)$



### **Recap / At One Glance.**



#### Discovery

#### Observed

- Decide on confidence level CL, e.g.  $5\sigma$ •
- Calculate observed  $q_{0,obs}$  from data •
- Get  $f(q_0|0)$  from asymptotic formulae or •
- toy experiments Calculate  $p_0 = \int_{q_0}^{\infty} f(q_0'|0) dq_0'$ •
- If  $p_0 \geq \alpha \rightarrow \text{don't reject } H_0$ , if  $p_0 < \alpha \rightarrow$  reject  $H_0$  and accept  $H_1$

#### **Limits** (example: upper limits)

#### Observed

- Decide on confidence level CL, e.g. 95%
- Hypothesise a signal strength  $\mu$ 
  - Calculate observed  $q_{\mu,obs}$  from data
  - Get  $f(q_{\mu}|\mu)$  from asymptotic formulae or
  - toy experiments Calculate  $p_{\mu} = \int_{q_{\mu}}^{\infty} f(q'_{\mu}|\mu) dq'_{\mu}$
  - If  $p_{\mu} \geq \alpha = 1 \mathrm{CL} \rightarrow \mathrm{don't}$  reject  $H_0$  , if  $p_{\mu} < \alpha \rightarrow$  reject  $H_0$  and accept  $H_1$
- Repeat for different values of  $\mu$
- Find the transition between rejection and nonrejection of  $H_0 \rightarrow$  this is the upper limit

### Possibly repeat for different parameters of the theory (e.g. Higgs masses)

### Recap / At One Glance.



#### **Discovery**

#### Expected

- Decide on confidence level CL, e.g.  $5\sigma$
- Get  $f(q_0|\mu)$  from asymptotic formulae or toy experiments, usually for  $\mu = 0$  or 1
- Generate toy data set for the same  $\mu$ 
  - Calculate observed  $q_{0,\mathrm{toy}}$  from data

• Calculate 
$$p_0 = \int_{q_{0,toy}}^{\infty} f(q_0'|\mu) dq_0'$$

- Enter  $p_0$  into histogram
- Generate more toy experiments and repeat
- Get median  $p_0$  (expected sensitivity) as well as the 68% and 95% percentiles (statistical uncertainty bands)

### Limits (example: upper limits)

#### Expected

- Decide on confidence level CL, e.g. 95%
- Get  $f(q_{\mu}|\mu')$  from asymptotic formulae or toy experiments, usually for  $\mu' = 0$  or 1
- Generate toy data set for the same  $\mu'$ 
  - Find the upper limit  $\mu_{95\%}$  for this toy data set as explained on the previous slide
  - Enter  $\mu_{95\%}$  into histogram
- Generate more toy experiments and repeat
- Get median  $\mu_{95\%}$  (expected upper limit) as well as the 68% and 95% percentiles (statistical uncertainty bands)

### Possibly repeat for different parameters of the theory (e.g. Higgs masses)

- Plethora of measurements, searches and bins at the LHC
  - We are bound to see "significant" excesses somewhere! •
    - If 100 bins, 5 bins should deviate by 2 standard deviations!
  - What do we really consider to be "significant"?
- Idea: Calculate a reduced global significance
- Dunn-Šidák correction
  - Assume all bins to be uncorrelated
  - Recall:  $\alpha = P(\text{type-1 error})$ •
  - Define:  $\alpha_{\text{global}} = P(\text{at least one type-1 error somewhere})$ •
    - $\rightarrow \alpha_{\text{global}} = 1 (1 \alpha)^n$  for n bins
  - Not commonly done in practice •



Ь

- Brute force approach: Generate random experiments / pseudo data
  - Very inefficient if done "naively" as one is precisely interested in very rare cases
- → Idea: Get number of upcrossings at lower reference level and scale it according to the analytically known asymptotic behaviour of f(q)
  - Much less random experiments needed at lower reference level



#### Summary.

#### LHC test statistics

- Different test statistics for discovery, upper and two-sided limits
- Based on likelihood ratios and profiling of the nuisance parameters
- Known closed-form asymptotic behaviour in the large sample limit

#### Feldman-Cousins and CLs methods

• Modifications to protect against wrongly rejecting the null hypothesis in case of a downward fluctuation of the background at low sensitivity

#### Look-Elsewhere Effect

- The more bins, the more likely it is to find a seemingly "significant" excess somewhere
- Derive a reduced global significance that takes into account the number of bins / search range

## Many thanks for your attention!