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Particle Production

Preheating via parametric resonance or excitation in post-

inflationary era vs instantaneous decay of inflaton Kofman, Linde 97"

Axion-inflation via tachyonic gauge boson or fermion production

Anbor, Sorbo 10’ Adshead, Pearce, Peloso,

itati i Roberts, Sorbo 18’
Gravitational waves from preheating oberts, Sorbo

Many literature

Greene, Kofman 99’ 00’
Since our focus is on the reformulation of theory of fermion

production, we will not get into any numerical simulation in this talk



Traditional Approach
To
Theory of Fermion Production



The model

s = j a*xy=g [ (ie",v*D, —m+ g@) )+ %(m)z -v(@)]

On the metric:
ds? = dt? — a(t)?dx* = a(t)?(dt* — dx?)

Under rescalingy — a=3/%1

_ 1
L= (iy" 3, —ma+g(@) ¥ + 500" 999, — a*V(¢)

Interaction type commonly h¢
considered in literature

g(@) =

: Yukawa-type

5
]—cy“y e . Axion-type



Benchmark model

1. Focus on axion-type interaction (derivative coupling)

2. Assume spatially homogenous scalar field : ¢(x,7) = ¢(7)
We will not distinguisht and ©

£ = (1740, = ma—2rr6 )y + 5an3,90,6 — 'V (@)



Benchmark model

1. Focus on axion-type interaction (derivative coupling)

2. Assume spatially homogenous scalar field : ¢(x,7) = ¢(7)

We will not distinguisht and ©

£= 9 (i 740, ~ma—Zy"V"d)w + 5?0, 00,6 — a*V(9)

f

A subtlety

5L, 5L . 1.
Hz/;:ﬁ:up H¢=5—¢=a¢—]—c¢)/]/ll)

H=Typ+Tyep—L
1 Gy%y°)?

1 .
—V°V5¢)¢ -5 +

=1,5(—iyi6i+ma+ 7

Definition of particle number is ambiguous

Massless limitis not manifest

a2 £2 22

I3 + a®V(¢)



Benchmark model

A way out

N 1 0,,5 1 2. UV 4
L=y \iy au—ma—fy v*¢ ) +5a"n""0,00,¢ — a*V(¢)
Adshead, Sfakianakis 15

L=1 (i y*d, — ma coszf—¢ +ima sinzf—qb)/S)llJ +%a277’“’3u¢5v¢ — a*V(¢)

Adshead, Pearce, Peloso, Roberts, Sorbo 18’




Benchmark model

A way out

N 1 0,,5 1 2. UV 4
L=y \iy au—ma—]—c)/ v*¢ ) +5a"n""0,00,¢ — a*V(¢)
Adshead, Sfakianakis 15
W — eIy

—{. 20 _2¢ . 1, A
L= (l y*o, — macosT +i masmTy )1/) +§a n*v0,¢0,¢ — a*V(¢p)
Adshead, Pearce, Peloso, Roberts, Sorbo 18’
= Mmp =m,

Hamiltonian formalism

v" No Y - dependence in conjugate momentum l'[¢

v Entire fermion sector is quadratic in i

: particle number is unambiguously defined
v" Massless limitis manifest



Tosumup

L=19 (iy*d S+ 2 V0,0 N

=P (iy#9, —mg +imy® )+ 5 a* 9,49, — a*V ()

H=9(—iy'd; + mg—imy®) b L2 +aty
=yY(—iy o+t mg—imy> )Y 2a2 ¢ a*V(¢p)

Entire fermion sector is quadratic in Y

: following the traditional technique of Bogoliubov coefficient, particle number is
unambiguously defined in this basis Adshead, Pearce, Peloso, Roberts, Sorbo 18’

Fermion Production _ o
We follow notation and convention in

Adshead, Pearce, Peloso, Roberts, Sorbo 18’

Quantize
T i 210006, + K (kOB ()
_ (w0 xr(K) _ .. (0 o
Ur = (r vr(k,t))(r(k))’ V= CU; Wlthc_(iaz 02)

k+ro-k _
) TRy here X = ) #=()




¥, = Zi f die? (a;t (), br(—k))(g: _Bj) (b;r((—kl)())

1 my k rm;
A, = > 1% E (uy 2 = v, 12) - %Re(u;ivr) —mlm(uﬁvr)
r el™Pk
B, = 5 [2 mpu, v — k(uz— v?2) — irm;(u? + v?)]
Diagonalization via ( Cir(k) ) - ( ar ﬂr)( C_l:(k) ) with eigenvalues of +w
by (_k) _BT ay/ \b; (_k)

Fermion number for a particle with helicity r (similarly for a anti-particle)

dk®
N, = f(mg (0Ola* (K)a(k)|0) = jdk3 i

Ny = 18,1 = (0la* (K)a(k)|0)

1 k rm,;
___k 2 2y _ _ 1
2 ” (Iu |“ —|v,1%) Re(u v,.) o Im(u v,.)

1. Initially one can diagonalize Hy such that a, a’ are associated with one-particle states.
2. Time-dependent ¢(t) induces off-diagonal elements, and a (a*) do not annihilates (creates)

one—particle states. Once hamiltonian is diagonalized, a(t)*a(t) includes b(0)b(0)* which gives
non-zero particle number



looks too technical ...
Any simplication?

.y = |B,1* = (0la(k)a(k)|0) = (0]b (k)b (k)|0)

1 m k rm;

R * *
> 10 (lupl® = v *) - %Re(urvr) - glm(urvr)

Solving EOM of u,., v, is a tricky in current basis



looks too technical ...
Any simplication?

.y = |B,1* = (0la(k)a(k)|0) = (0]b (k)b (k)|0)

1 m k rm;

R * *
> 10 (lupl® = v *) - %Re(urvr) - ﬂlm(urvr)

Solving EOM of u,., v, is a tricky in current basis

Recall a Fourier mode

y, = (40 5:09)

— u?" _
rv.(k Oy (K)/ (rvr) Q Xr =& O Xr

Then we realize that

1
(r1= Er(urvr + u,v;) =71 Re(u,v,)
L m—l> 51‘ = Er o 'Sr
(ro=— Er(u;vr - urv:) =T Im(u;vr)

1 collapses into one vector
(7'3 = E(lurlz - |vr|2)



.y = |B,1* = (0la(k)a(k)|0) = (0]b (k)b (k)|0)

= 2 TR (|2~ v, 12) ~ 5 Re(uyn) ~ = im(us,)
A A A > - Uy
q:Tkx1+m1xZ+me3 Crzf‘l”o-f‘l” W/frE( )

Iq] = w = k? + m?

We will see the origin of this
vector later

1
(1 == r(uv + u,v;) =r Re(u,v,)

[
(rp=— Er(u;vr - urv:) =T Im(u;ivr)

1
3= E(lurlz - |v‘r|2)



.y = |B,1* = (0la(k)a(k)|0) = (0]b (k)b (k)|0)

= 2 TR (|2~ v, 12) ~ 5 Re(uyn) ~ = im(us,)
A A A > - Uy
q=rkXx;{ +m; X, + mp X3 (r =$r0 &y W/fr—(rv)

Iq] = w = k? + m?

We will see the origin of this
vector later

1
(1= r(u v, + u,v,.) =1 Re(u,v,)

[
(rp=— Er(u;vr - urv:) =T Im(u;ivr)

1
(T'B - E(lurlz - |Ur|2)

— N, (0) = L (1 — qh?) = %(1 — cos0)

ZT, g behavelike vector reps of SO(3) I. What is this mysterious SO(3)?



Group Theoretic Approach



Lorentz Group

Weyl Representation
0 I ; 0 o —I, O
0 _ 2| — I L) — . 5 _ 2
4 _(12 0)_“1@”2 V‘(—ai o)““z‘g"’l 4 ( )

Spinor rep. satisfying Lorentz algebra

l

SE = —[yHhyY]
4
_1 jk 1 : _ cio _ L
Ji = EfinS = 512 ® o; (space rotation) , K;=58" = 5 03 X o; (boost)
— > .30
Y~ &R » e Y=t 7y,
On the other hand
J;+iK, 1 o;
(]L,R)l- == 72 - = E(Izi 03) ®§L . SU(2) xSUQ2)y
: Rep. of SU(2), XSU(2)yis
1 1 . 1/)L> constructed as a ‘tensor sum’
Go)eloy) v=(



‘Reparametrization’” Group

While y* is fixed (only 1 transforms) in the Lorentz group, there is a freedom
in choosing a representation of the gamma matrices. This freedom is totally

unphysical though.

Clifford Algebra
{yFyv}=2nH
yH > Uy*U~t . GL(4,0)

Dirac Theory
We assign the transformation of Y, Y - Uy

L=yryo(iy#d, —m)y
- L=y+ Utuy°U-(iUy*U-19, — m)Uy
Utu =UUt=1 : U(4)

This symmetry is not identified with the non-unitary Lorentz group
: note that both y* and i transform under U unlike the Lorentz group



We consider the following subgroup of U(4)

SUR2)1xSU2),xU(1) c U(4)
The rep of subgroup is constructed asa ‘tensor product’ of two SU(2)’s

and phase rotation, e.g. (a11 a12) QU = (alle as; Uz)
a21 Cl22 2 a21U2 a22U2
= U1

Under SU(2); ® SU(2), transformation (we associate U (1) with &,.)

Y~ fr 03¢ Xr = (Ul 0% UZ)(gr 03¢ Xr) = (Ulfr) 03¢ (UZXT)

This seems what we are looking for LOOkS_ similar to space
rotation of Lorentz group.
In fact, we already have a well- But it is not, and it does

known example for this symmetry not play any role

Let ustake alookat SU(2); and SU(2), to see whatthey are



An example of SU(2)4

Weyl Representation Diweyt = <1/JL>

0 I : 0 o :
V0:<12 5):0'1®12 Vl:< _ Ol>:lo'z®0'i y°

|
—
O —
N
pl=)
~—
|
|
wq
P~
N

1 (lPL‘H/JR)

Dirac Representation Yirac = |y 4+
L R

2
I 0 ; 0 o 0 I
0 _ ("2 — I — 1) —; ) 5 _ 2) —
Y _(0 _Iz>_03®12 Y _(—0 0)—102®01 Y (12 0) 1@

Two representations are related via a similarity transformation
7 u —1 _ K
yWeyl - Uy yWeyl U™ = VDirac

l/)Weyl - UllpWeyl = Upirac

. TT O

w/Uy(m/2) =e'z2 :%7(_11 1)



SU(2), cannot be identified

with the space rotation subgroup of Lorentz group
** A mistake in 1808.00939. It will be corrected.

In terms of Gamma matrices

Rotation by SU(2), Space rotation of Lorentz group
UZVﬂUz_l — Aﬂvyv Al/ZV#AI/lZ = Aﬂvyv
(YH=UyHU 1y - UY) (YH=vH Y - A p))

In terms of transformation of i - bilinears

Under rotation by SU(2),
Yy > YUt Uy U UYRUTIUY = Py Ry

Under space rotation of Lorentz group

Yy = ALY HA = N Py Ry



Previously mysterious group
that we were lookingforis SU(2){XU(1)

We will drop subscript from now on

Thisis what our group theoreticapproach is based on



We will consider first fermion production
in ‘Inertial Frame’

L=1 (i y#0, —ma cos¥+ i ma sin?)tp + %aznwaudbav(b — a*V(¢)

H =p(—iy'o; + — i 5) +LH2+ Yy
=Yl =iy 0+ mp —imy” Y + o515 +a (@)



Group Theoretic Approach

Dirac equation in inertial frame

(iy#0, —mg +imy®)p =0
EOM in tensor form for a Fourier mode can be written as (using (¢ - K)y, = rky,)

[ 030, — irko, —mgl; + imyoy) @ 1§ @ xr) =0

Gives rise to EOM of fundamental rep.

_ : - . it is called Weyl equation in condensed matter physics
9:& = —i(q-0)é, vied Py
/ I W/q=Tk5C\1+mI5C\2+mR5C\3

SU(2) embedding of
SU(2) fundamental SO(3) vector q



Group Theoretic Approach

Fundamental rep. of SU(2)

= ()

EOM of fundamental rep.

atfr = _i(q ) 0_'))51‘
SU(2) embedding of
SO(3) vector

W/q:kal +m1552+mR5€3



Group Theoretic Approach

Fundamental rep. of SU(2)

& = (1)

EOM of fundamental rep.

at'fr = _i(q ) O_z)ér
SU(2) embedding of
SO(3) vector

W/q:kal +m1f2+me3

In terms of SO(3) ~ SU(2) reps

. ) +
Bilinearof ¢, : & A, w/ A = arbitrary 2x2

complex matrix

EY&E(=1) : scalar

(. =&YG& . vector

the only non-trivial rep.

EOM of vectorial rep.

|
0:(r; = Efﬁ liq- 0,01 = 26,190 &

1 > -
E 0., = qXJ{,



Analog to classical precession motion

Quantum mechanical fermion Classical precession of a vector 1
production with angular velocity @

1d(, % ¥ _

2 dt r dt

w/q=rkx;+m; X, +my X5

——
-

-
-

Sao
S——

when 7 =M (magnetization), @ = wy = —yB
dM
— = wy XM : called block eq.
dt
7=q- 57' E= a_jM M



Particle number density

¥, = Zi f die? (a;t (), br(—k))(g: _Bj) (b;r((—kl)())

. 1 myg 2 2 i rm; .
A, = E—E(WH — |Vr| ) — %Re(urvr) —Elm(urvr)
reir(pk
B, = 5 [2 mpu, v, — k(u% - Vrz) — irm, (urz + vrz)]

Now it is clear that each matrix element should be a function of q and (_),,
in our group theoretic approach



Particle number density

Hy = Z [ aw @raob0) (5 5 ) (o)

b, (k)
1 mpg 2 2 k % rm; %
A, = E—E(WH — |v.?) - %Re(urvr) —mlm(urvr)
r el™Pk

r > [2 MpUr V- — k(u% - vrz) — irm, (uz + vrz)]

Now it is clear that each matrix element should be a function of q and (_),,
in our group theoretic approach

Diagonal element Off-diagonal element

> N

Ar=q- ¢ |Br|2 = (qxzr)
= wcosh B,| = |qx{;| = wsind

One can easily see why

eigenvalues are +w = %|(|



Particle number density

w3 Joe@oan )l %))
A, =q-¢, 1Bl =|qx{,]

At time t, off-diagonal element becomes non-zero.
Diagonalization is done via

(b?*r((l( 11)) ” (—a/i ﬁ:) (b?((_ki))

.1 = (0la* (K)a(k)|0) = |8,1>=f(q- . |ql)



Particle number density

w3 Joe@oan )l %))
A, =q-¢, 1Bl =|qx{,]

At time t, off-diagonal element becomes non-zero.
Diagonalization is done via

(b?r((l( 11)) ” (—a/i ﬁ:) (b?((_ki))

.1 = (0la* (K)a(k)|0) = |8,1>=f(q- . |ql)

It should be at most linear in f,,

7 Using Pauli-blocking property:
B q- ¢
= AR B 0<n., <1
. . . . . 1 q- Cr
which gives rise to inequality, > Ny g = > 1-— ql

A—BSnr'kSA+B

" — " sign chosen for the
consistency with the form of 4,

(** agrees with our explicit computation)



Solution of EOM

Given the particle number density, closed form of solution is available

1, R R 1 q-
Eat(r = qx¢ = (q- L){; Nrk _§<1_ Iq >
W/q=ka1+m1f2+me3

Initial condition (<> zero particle number) att = ¢t is straightforward unlike other
approach
do

O (tg, tg) =
T‘(O 0) |q0|

Just like solving Schrodinger eq. for the unitary op., EOM can be iteratively
solved to be
t

o

dt’ (q- L)(t')> ]

Zr(t: tO) =T exp (

to

Expanding involves commutator of series of q - L

WAKB solution might be the case with vanishing commutators



Switchingto ‘Rotating Frame’

Via yp - etV 9/1q)

L = l/; (i y“@u — ma — %VOVSQS) l/J + %aznuva,uqbavqb — a4V(qb)

Equivalent to (in terms of (:A)

1 0 0
&> RO, R(D) = (0 cos 2¢/f —sin2¢/f>
0 sin2¢/f cos2¢/f
This rotating frame is
non-inertial frame

Needs to supplement extra terms, e.g. Coriolis, centrifugal forces
etc, to keep physics independent



EOM in Rotating Frame’

1 0 0
Under {, = R(t){,, R(t) = (0 cos 2¢p/f —sin 2¢/f>
0 sin2¢/f cos2¢/f

Similarly to the classical mechanics, EOM transforms like

1 . é N 1 > 4
Eatzr = qX{, = (q ) L)cr - Eat(R(r) = (q ) L)(R(T)

1. I S
~0,0, =R™(@-LR,— SRR,

EOM can be brought back to the universal form w/ (RTR)U = €ijkWe, Kk



EOM in Rotating Frame’

1 0 0
Under {, = R(t){,, R(t) = (0 cos 2¢p/f —sin 2¢/f>
0 sin2¢/f cos2¢/f

Similarly to the classical mechanics, EOM transforms like

1 . é N 1 > 4
Eatzr = qX{, = (q ) L)cr - Eat(R(r) = (q ) L)(R(T)

1 - T - 1 T.—)
506 =R (@ LR § — SRIRE

T p = ..
EOM can be brought back to the universal form w/ (R R)ij = Cijie@We k

1 - - 1 N - N - P
Eatcr = RqX{, + Ew(TX(r — (Rq + w(r)xzr = q X

q = <rk+%>3?1+maf3

: different basis amounts to choose different angular velocity



Particle number density in ‘Rotating (non-inertial) Frame’

Particle number density in rotating frame

. = (0]a* (K)ak)|0) = |8, 1= (" - . 1q'])

It should be at most linear in Zr.
Higher order terms should vanish to match to the one ininertial framein ¢ — 0 limit

n =1<1_q"5r>
T,k 2 |qI|

This particle number density matches to

v\ﬂ:e quadratic terms in

}[wz

1/7(—i]/i6i+ma+

f

. Voyscb)w

See Adshead, Sfakianakis 15’ for
a related discussion

1 (Py°y°y)?

2a?

1. It looks like particle numbers are differentin two different frames.
2. Establishing the ‘final’ particle number as a basis-independent quantity seems
very non-trivial, e.g. Inertial frame vs. Non-inertial frame

fZ

35



Summary

We proposed a new group theoreticapproach to theory of
fermion production

1. This approach is based on the reparametrization group of gramma matrcies

2. This approach applies to any fermion system

Possible extension is gravitino production, fermion production from
gravitational background, fermion production in extra-dim. spacetime

3. Needs an idea to simplify the solution for analytic understanding

It would be great if this approach can simplify some
complicated computationorgive a new insight



Extra Slides



Back reaction

B+2 =+ aV(@) = (Blm, +imey* )

f

ZJ(Z )3<m1(r3+mR€r2>

In the massless limit, m —» 0
q — T'k 551

Initally, (_),, should be parallel to q, stayin X;-axis
0:¢ =2qX¢. =0

Since q is constant, (_; does not evolve. {,., = (,.3 = 0 for any time



Ny = |BrI? = (0la(k)a(k)|0) = (0|b(k)b(k)|0)
1

k rm;
= —E(u,|? 2 —5-R —1
=5 " 1w (Iu |“ —[v,.|%) e(u;v,.) — o m(uyv,)

Solve equations of motion for u,., v,

1 :
(i)/“au—mR+im,y5)1,b= 0 (i)/“au—m—]—c)’o)/sfl))lp =
Y ~ U, (k,t)a, (k) + V.(—k,t)bf (—k) Y ~ U, (k,)a, (k) + V.(—k,t)bf (—k)
_ (ur(K ) xr(K) ~ _ (ko) xr-(kK)
Ur = (r v, (K,t) )(r(k)) Ur = (r 7. (K, t) )(T(k))
. Uyt p U Uy I P 7 F U=
A N R G

1 . . ~
uT = —z(elr(p/f §T+e_lr¢/fd1’)

1 . . ~
vr — _(elr(p/f S'r_e_lr(l)/fdr)

V2



In inflationary era, EOM in the original basis has an analytic solution

1 .
(i)’”au —m- fVOVSQb)l/J =
d3k
(271-)3/2

e lkx Z |0, (k,t)a,(K) + V.(—k,t)b} (—k)]

r=+4 -
0 = (ur(k't) Xr(k))
r — ~
In an inflationary era 7 7 (k, 1) ) (K)
Adshead, Sfakianakis 15’
. ma m ap 2 . 5 Spd
k Htk x fk «x NE

dfs, + —1+1<1+i2€r> i<1+ 2+4€2) s, =0
tor 2 X \2 z\1 U T

, 1 1/ 1 1,
atdr+ [—Z+;<—§+125T>+F(Z+ﬂ +4€ )] ST=O

Whittaker Equation

1, _ .2
d?w +[ 1ox i

=0
dz? 4 z z2 ]W



The formula in a static Universe has a close similarity to the case with Yukawa-
type interaction

1 .
(i)/”au —m- fVOVSQb)l/J =
d3k
(271-)3/2

e lkx Z |0, (k,t)a,(K) + V.(—k,t)b} (—k)]

r=t _— (ar(k,t) Xr(k))

r — ~
In a static Universe r 7 (K, £) x, (K)

Adshead, Sfakianakis 15’
1 k

Ny = 2 E(lgrlz - |dr|2) -

—Im(3;:d,)

1 [; 2 ~ 12 Y
= ~ d 22 |d, " — 201 dd*]
g[-)2
023, + <k+r7> +zatlE] 5.=0
é 2
dd, + <k+r7> —latk] d. =0




