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Particle	Production

2

Preheating	via	parametric	resonance	or	excitation	in	post-
inflationary	era		vs		instantaneous	decay	of	inflaton

Gravitational	waves	from	preheating

Axion-inflation	 via	tachyonic gauge	boson	 or	fermion	production

Since	our	focus	is	on	the	reformulation	of	theory	of	fermion	
production,	we	will	not	get	into	any	numerical	simulation	in	this	talk

Anbor,	Sorbo 10’ Adshead,	Pearce,	Peloso,	
Roberts,	Sorbo 18’

Many	literature	

Kofman,	Linde	97’	

Greene,	Kofman99’	00’	



Traditional	Approach
To	

Theory	of	Fermion	Production
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𝒮 = #𝑑%𝑥	 −𝑔	 𝜓+ 	 𝑖	𝑒			.
/ 	𝛾.𝐷/ − 𝑚+ 𝑔 𝜙 𝜓+

1
2 𝜕/𝜙

8
− 𝑉(𝜙) 	

𝑑𝑠8 = 𝑑𝑡8 − 𝑎 𝑡 8𝑑𝐱8 = 𝑎 𝑡 8(𝑑𝜏8 − 𝑑𝐱8)

Under	rescaling	𝜓 → 𝑎BC/8𝜓

ℒ = 𝜓+ 	 𝑖	𝛾/𝜕/ −𝑚𝑎 + 𝑔 𝜙 𝜓 +
1
2𝑎

8𝜂/G𝜕/𝜙𝜕G𝜙 − 𝑎%𝑉(𝜙)

𝑔 𝜙 =
:		Yukawa-type

:		Axion-type

Interaction	type	commonly	
considered	in	literature

The	model	

On	the	metric:

H
ℎ𝜙

					
1
𝑓 𝛾

/𝛾K𝜕/𝜙
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ℒ = 𝜓+ 	 𝑖	𝛾/𝜕/ −𝑚𝑎 −
1
𝑓
𝛾L𝛾K�̇� 𝜓 +

1
2
𝑎8𝜂/G𝜕/𝜙𝜕G𝜙− 𝑎%𝑉(𝜙)

Benchmark	model	

1. Focus	on	axion-type	interaction	(derivative	coupling)
2. Assume	spatially	homogenous	 scalar	field	:	𝜙(𝐱,𝜏) = 𝜙(𝜏)

We	will	not	distinguish	𝑡 and	𝜏
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ℒ = 𝜓+ 	 𝑖	𝛾/𝜕/ −𝑚𝑎 −
1
𝑓
𝛾L𝛾K�̇� 𝜓 +

1
2
𝑎8𝜂/G𝜕/𝜙𝜕G𝜙− 𝑎%𝑉(𝜙)

Benchmark	model	

1. Focus	on	axion-type	interaction	(derivative	coupling)
2. Assume	spatially	homogenous	 scalar	field	:	𝜙(𝐱,𝜏) = 𝜙(𝜏)

A	subtlety

ΠP =
𝛿ℒ
𝛿�̇�

= 𝑖𝜓R ΠS =
𝛿ℒ
𝛿�̇�

= 𝑎8�̇� −
1
𝑓
𝜓+𝛾L𝛾K𝜓

ℋ = ΠP�̇�+ΠS�̇� − ℒ

= 𝜓+ 	−𝑖	𝛾U𝜕U + 𝑚𝑎 +	
1
𝑓
𝛾L𝛾K�̇� 𝜓 −

1
2𝑎8

𝜓+𝛾L𝛾K𝜓 8

𝑓8
+ 	

1
2𝑎8

ΠS8 + 𝑎K𝑉(𝜙)

Definition	of	particle	number	is	ambiguous

Massless	limit	is	not	manifest

We	will	not	distinguish	𝑡 and	𝜏
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ℒ = 𝜓+ 	 𝑖	𝛾/𝜕/ −𝑚𝑎 −
1
𝑓
𝛾L𝛾K�̇� 𝜓 +

1
2
𝑎8𝜂/G𝜕/𝜙𝜕G𝜙− 𝑎%𝑉(𝜙)

Benchmark	model	
A	way	out

𝜓 → 𝑒BUV
WS/X𝜓

ℒ = 𝜓+	 𝑖	𝛾/𝜕/ − 𝑚𝑎 cos
2𝜙
𝑓
+ 𝑖	𝑚𝑎 sin

2𝜙
𝑓
𝛾K 𝜓 +

1
2
𝑎8𝜂/G𝜕/𝜙𝜕G𝜙− 𝑎%𝑉(𝜙)

= 𝑚^ = 𝑚_

Adshead,	Pearce,	Peloso,	Roberts,	Sorbo 18’

Adshead,	Sfakianakis 15’
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ℒ = 𝜓+ 	 𝑖	𝛾/𝜕/ −𝑚𝑎 −
1
𝑓
𝛾L𝛾K�̇� 𝜓 +

1
2
𝑎8𝜂/G𝜕/𝜙𝜕G𝜙− 𝑎%𝑉(𝜙)

Benchmark	model	

Hamiltonian	 formalism

ΠP =
𝛿ℒ
𝛿�̇�

= 𝑖𝜓R ΠS =
𝛿ℒ
𝛿�̇�

= 𝑎8�̇�

ℋ = 𝜓+ 	−𝑖	𝛾U𝜕U + 𝑚^ − 𝑖	𝑚_𝛾K 𝜓+	
1
2𝑎8

ΠS8 + 𝑎%𝑉(𝜙)

A	way	out

𝜓 → 𝑒BUV
WS/X𝜓

ℒ = 𝜓+	 𝑖	𝛾/𝜕/ − 𝑚𝑎 cos
2𝜙
𝑓
+ 𝑖	𝑚𝑎 sin

2𝜙
𝑓
𝛾K 𝜓 +

1
2
𝑎8𝜂/G𝜕/𝜙𝜕G𝜙− 𝑎%𝑉(𝜙)

ü No	𝜓 - dependence	in	conjugate	momentum	ΠS

ü Entire	fermion	sector	is	quadratic	in	𝜓

= 𝑚^ = 𝑚_

ü Massless	limit	is	manifest
:	particle	number	is	unambiguously	defined

Adshead,	Pearce,	Peloso,	Roberts,	Sorbo 18’

Adshead,	Sfakianakis 15’
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To	sum	up

ℋ = 𝜓+ 	−𝑖	𝛾U𝜕U + 𝑚^ − 𝑖	𝑚_𝛾K 𝜓+	
1
2𝑎8

ΠS8 + 𝑎%𝑉(𝜙)

:	following	the	traditional	technique	of	Bogoliubov coefficient,	particle	number	is	
unambiguously	defined	in	this	basis

Entire	fermion	sector	is	quadratic	in	𝜓

ℒ = 𝜓+	 𝑖	𝛾/𝜕/ −𝑚^ + 𝑖	𝑚_𝛾K 𝜓+
1
2
𝑎8𝜂/G𝜕/𝜙𝜕G𝜙− 𝑎%𝑉(𝜙)

Quantize	𝜓

𝜓 = #
𝑑C𝑘
2𝜋 C/8𝑒

U𝐤⋅𝐱d 𝑈f 𝐤,𝑡 𝑎f 𝐤 + 𝑉f −𝐤,𝑡 𝑏fR(−𝐤)
fh±

Fermion	Production

𝑈f =	
𝑢f 𝐤,𝑡 	𝜒f(𝐤)
𝑟	𝑣f 𝐤,𝑡 𝜒f(𝐤)

, 𝑉f = 𝐶𝑈ofp with	𝐶 = 0 𝑖𝜎8
𝑖𝜎8 0

𝜒f 𝐤 =
𝑘 + 𝑟	�⃗� ⋅ 𝐤
2𝑘 𝑘 + 𝑘C

�̅�f	 where	�̅�R =
1
0 , �̅�B =

0
1

We	follow	notation	and	convention	 in
Adshead,	Pearce,	Peloso,	Roberts,	Sorbo 18’

Adshead,	Pearce,	Peloso,	Roberts,	Sorbo 18’
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ℋP = d #𝑑𝑘C

fh±

𝑎fR 𝐤 ,𝑏f −𝐤
𝐴f 𝐵f∗
𝐵f −𝐴f

𝑎f(𝐤)
𝑏fR(−𝐤)

𝑁f = #
𝑑𝑘C

2𝜋 C 	 0 𝑎
R(𝐤)𝑎(𝐤) 0 = #𝑑𝑘C	𝑛f,z

=
1
2
−
𝑚^
4𝜔

𝑢f 8 − 𝑣f 8 −
𝑘
2𝜔

𝑅𝑒 𝑢f∗𝑣f −
𝑟𝑚_
2𝜔

𝐼𝑚(𝑢f∗𝑣f)

𝑛f,z = 𝛽f 8 = 0 𝑎R(𝐤)𝑎(𝐤) 0

𝐴f =
1
2 −

𝑚^

4𝜔 𝑢f 8 − 𝑣f 8 −
𝑘
2𝜔 𝑅𝑒 𝑢f

∗𝑣f −
𝑟𝑚_

2𝜔 𝐼𝑚(𝑢f∗𝑣f)

𝐵f =
𝑟	𝑒Uf��
2 2	𝑚^𝑢f𝑣f − 𝑘 𝑢f8− 𝑣f8 − 𝑖𝑟𝑚_(𝑢f8+ 𝑣f8)

Fermion	number	 for	a	particle	with	helicity	𝑟 (similarly	for	a	anti-particle)	

1. Initially	one	can	diagonalizeℋP such	that	𝑎, 𝑎R are	associated	with	one-particle	states.	
2. Time-dependent	𝜙(𝑡) induces	 off-diagonal	 elements,	and	𝑎	(𝑎R) do	not	annihilates	 (creates)	

one–particle	states.	Once	hamiltonian is	diagonalized,	𝑎(𝑡)R𝑎(𝑡) includes	𝑏(0)𝑏(0)Rwhich	gives	
non-zero	particle	number

𝑎f(𝐤)
𝑏fR(−𝐤)

→ 𝛼f∗ 𝛽f∗
−𝛽f 𝛼f

𝑎f(𝐤)
𝑏fR(−𝐤)

Diagonalization	via with	eigenvalues	of	±𝜔
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=
1
2
−
𝑚^
4𝜔

𝑢f 8 − 𝑣f 8 −
𝑘
2𝜔

𝑅𝑒 𝑢f∗𝑣f −
𝑟	𝑚_
2𝜔

𝐼𝑚(𝑢f∗𝑣f)

𝑛f,z = 𝛽f 8 = 0 𝑎(𝐤)𝑎(𝐤) 0 =	 0 𝑏(𝐤)𝑏(𝐤) 0

looks	too	technical	…	
Any	simplication?	

Solving	EOM	of	𝑢f, 𝑣f is	a	tricky	in	current	basis
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=
1
2
−
𝑚^
4𝜔

𝑢f 8 − 𝑣f 8 −
𝑘
2𝜔

𝑅𝑒 𝑢f∗𝑣f −
𝑟	𝑚_
2𝜔

𝐼𝑚(𝑢f∗𝑣f)

𝑛f,z = 𝛽f 8 = 0 𝑎(𝐤)𝑎(𝐤) 0 =	 0 𝑏(𝐤)𝑏(𝐤) 0

𝜁f = 𝜉fR�⃗�	𝜉f
𝜁f	� =

1
2
𝑟(𝑢f∗𝑣f + 𝑢f𝑣f∗) = 𝑟	𝑅𝑒(𝑢f∗𝑣f)

𝜁f	8 = −
𝑖
2
𝑟(𝑢f∗𝑣f − 𝑢f𝑣f∗) = 𝑟	𝐼𝑚(𝑢f∗𝑣f)

𝜁f	C =
1
2

𝑢f 8 − 𝑣f 8

𝜓 ∼ 𝑈f 𝐤,𝑡 𝑎f 𝐤 + 𝑉f −𝐤,𝑡 𝑏fR(−𝐤)

𝑈f = 	
𝑢f 𝐤,𝑡 	𝜒f(𝐤)
𝑟	𝑣f 𝐤,𝑡 𝜒f(𝐤)

=
𝑢f
𝑟𝑣f

⊗ 𝜒f ≡ 𝜉f ⊗𝜒f

Then	we	realize	that	

Recall	a	Fourier	mode

collapses	into	one	vector

looks	too	technical	…	
Any	simplication?	

Solving	EOM	of	𝑢f, 𝑣f is	a	tricky	in	current	basis
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=
1
2
−
𝑚^
4𝜔

𝑢f 8 − 𝑣f 8 −
𝑘
2𝜔

𝑅𝑒 𝑢f∗𝑣f −
𝑟	𝑚_
2𝜔

𝐼𝑚(𝑢f∗𝑣f)

𝑛f,z = 𝛽f 8 = 0 𝑎(𝐤)𝑎(𝐤) 0 =	 0 𝑏(𝐤)𝑏(𝐤) 0

𝜁f = 𝜉fR�⃗�	𝜉f

𝜁f	� =
1
2
𝑟(𝑢f∗𝑣f + 𝑢f𝑣f∗) = 𝑟	𝑅𝑒(𝑢f∗𝑣f)

𝜁f	8 = −
𝑖
2
𝑟(𝑢f∗𝑣f − 𝑢f𝑣f∗) = 𝑟	𝐼𝑚(𝑢f∗𝑣f)

𝜁f	C =
1
2

𝑢f 8 − 𝑣f 8

𝐪 = 𝑟𝑘	𝑥�� +𝑚_	𝑥�8 +𝑚^	𝑥�C
𝐪 = 𝜔 = 𝑘8 +𝑚8

w/	𝜉f ≡
𝑢f
𝑟𝑣f

We	will	see	the	origin	of	this	
vector	later
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=
1
2
−
𝑚^
4𝜔

𝑢f 8 − 𝑣f 8 −
𝑘
2𝜔

𝑅𝑒 𝑢f∗𝑣f −
𝑟	𝑚_
2𝜔

𝐼𝑚(𝑢f∗𝑣f)

𝑛f,z = 𝛽f 8 = 0 𝑎(𝐤)𝑎(𝐤) 0 =	 0 𝑏(𝐤)𝑏(𝐤) 0

𝜁f = 𝜉fR�⃗�	𝜉f

𝜁f	� =
1
2
𝑟(𝑢f∗𝑣f + 𝑢f𝑣f∗) = 𝑟	𝑅𝑒(𝑢f∗𝑣f)

𝜁f	8 = −
𝑖
2
𝑟(𝑢f∗𝑣f − 𝑢f𝑣f∗) = 𝑟	𝐼𝑚(𝑢f∗𝑣f)

𝜁f	C =
1
2

𝑢f 8 − 𝑣f 8

𝐪 = 𝑟𝑘	𝑥�� +𝑚_	𝑥�8 +𝑚^	𝑥�C
𝐪 = 𝜔 = 𝑘8 +𝑚8

𝑛f,z 𝑡 		= 		
1
2 1 −

𝐪 ⋅ 𝜁f
|𝐪| =

1
2(1 − cos𝜃)

𝜁f, 𝐪 behave	like	vector	reps	of	SO(3)	!.	What	is	this	mysterious	SO(3)?

w/	𝜉f ≡
𝑢f
𝑟𝑣f

We	will	see	the	origin	of	this	
vector	later



Group	Theoretic	Approach
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Lorentz	Group

𝛾L = 0 𝐼8
𝐼8 0 = 𝜎�⊗ 𝐼8 𝛾U = 0 𝜎U

−𝜎U 0 = 𝑖	𝜎8⊗ 𝜎U 𝛾K = −𝐼8 0
0 𝐼8

= −𝜎C ⊗ 𝐼8

𝑆/G =
𝑖
4 [𝛾

/,𝛾G]

Weyl	Representation

𝐽U ≡
1
2
𝜖U�z𝑆�z =

1
2
𝐼8 ⊗𝜎U 𝐾U ≡ 𝑆UL =

𝑖
2
𝜎C ⊗𝜎U

𝐽�,	^ U
=
𝐽U ∓ 𝑖	𝐾U

2
= 	
1
2
𝐼8 ± 𝜎C ⊗

𝜎U
2

𝜓 = 𝜓�
𝜓^

1
2
, 0 ⊕ 0,

1
2

Spinor	 rep.	satisfying	Lorentz	algebra

(space	rotation)	 , (boost)

:						𝑆𝑈 2 �×𝑆𝑈 2 ^

:	Rep.	of	𝑆𝑈 2 �×𝑆𝑈 2 ^ is	
constructed	as	a	‘tensor	sum’

𝜓 ∼ 	𝜉f ⊗ 𝜒f	 → 		𝑒BU�⋅�⃗𝜓 = 𝜉 ⊗𝑒BU�⋅
�
8 	𝜒f

On	the	other	hand



‘Reparametrization’	Group
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𝛾/,𝛾G = 2	𝜂/G

𝛾/ → 𝑈𝛾/𝑈B� : GL(4,C)

ℒ = 𝜓R𝛾L 𝑖𝛾/𝜕/ −𝑚 𝜓	
→ ℒ = 𝜓R 𝑈R𝑈𝛾L𝑈B� 𝑖𝑈𝛾/𝑈B�𝜕/ −𝑚 𝑈𝜓	

𝑈R𝑈 = 𝑈𝑈R = 1 : U(4)

This	symmetry	is	not	identified	with	the	non-unitary	Lorentz	group
:	note	that	both	𝛾/ and	𝜓 transform	under	𝑈 unlike	 the	Lorentz	group

Clifford	Algebra

Dirac	Theory
We	assign	the	transformation	of	𝜓,		𝜓 → 𝑈𝜓

While	𝛾/ is	fixed	(only	𝜓 transforms)	 in	the	Lorentz	group,	 there	is	a	freedom	
in	choosing	a	representation	of	the	gamma	matrices.	This	freedom	 is	totally	
unphysical	though.
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We	consider	the	following	subgroup	of	𝑈(4)

𝑆𝑈 2 �×𝑆𝑈 2 8×𝑈(1) ⊂ 𝑈(4)
The	rep	of	subgroup	 is	constructed	as	a	‘tensor	product’	of	two	𝑆𝑈(2)’s	
and	phase	rotation,	e.g.	

Under	𝑆𝑈 2 � ⊗ 𝑆𝑈 2 8 transformation	 (we	associate	𝑈(1) with	𝜉f)	

𝑎�� 𝑎�8
𝑎8� 𝑎88 ⊗ 𝑈8 	=

𝑎��𝑈8 𝑎�8𝑈8
𝑎8�𝑈8 𝑎88𝑈8

= 𝑈�

𝜓 ∼	 𝜉f ⊗ 𝜒f	 → 		 𝑈� ⊗ 𝑈8 𝜉f ⊗	𝜒f = 𝑈�𝜉f ⊗ (𝑈8𝜒f)

Looks	similar	to	space	
rotation	of	Lorentz	group.	
But	it	is	not,	and	it	does	
not	play	any	role

This	seems	what	we	are	looking	for

In	fact,	we	already	have	a	well-
known	 example	for	this	symmetry

Let	us	take	a	look	at	𝑆𝑈 2 � and	𝑆𝑈 2 8 to	see	what	they	are
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𝛾L = 𝐼8 0
0 −𝐼8

= 𝜎C ⊗ 𝐼8 𝛾U = 0 𝜎U
−𝜎U 0 = 𝑖	𝜎8⊗ 𝜎U 𝛾K = 0 𝐼8

𝐼8 0 = 𝜎�⊗ 𝐼8

𝛾L = 0 𝐼8
𝐼8 0 = 𝜎�⊗ 𝐼8 𝛾U = 0 𝜎U

−𝜎U 0 = 𝑖	𝜎8⊗ 𝜎U 𝛾K = −𝐼8 0
0 𝐼8

= −𝜎C ⊗ 𝐼8

Weyl	Representation

Dirac	Representation

𝜓���� =
𝜓�
𝜓^

𝜓 ¡¢£¤ =
1
2

𝜓� +𝜓^
−𝜓� +𝜓^

w/	𝑈�(𝜋/2) = 𝑒U	
¥
¦	
§¨
¦ = �

8
1 1
−1 1

𝜓���� 		→ 𝑈�𝜓���� = 𝜓 ¡¢£¤

𝛾����
/ 		→		𝑈�𝛾����

/ 𝑈�B� = 𝛾 ¡¢£¤
/

Two	representations	are	related	via	a	similarity	transformation

An	example	of	𝑆𝑈(2)�
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Rotation	by	𝑆𝑈 2 8

𝑆𝑈 2 8 can	not	be	identified	
with	the	space	rotation	subgroup	of	Lorentz	group

𝑈8𝛾/𝑈8B� = Λ			G
/ 𝛾G Λ�/8𝛾/Λ�/8B� = Λ			G

/ 𝛾G
Space	rotation	of	Lorentz	group

In	terms	of	transformation	of	𝜓 - bilinears

𝜓+𝛾/𝜓 → 𝜓R𝑈R𝑈𝛾L𝑈B�𝑈𝛾/𝑈B�𝑈𝜓 = 𝜓+𝛾/𝜓

𝜓+𝛾/𝜓 → 𝜓+	Λ�/8B� 𝛾/Λ�/8𝜓 = Λ			G
/ 	𝜓o 𝛾/𝜓

Under	rotation	by	𝑆𝑈 2 8

Under	space	rotation	of	Lorentz	group

In	terms	of	Gamma	matrices

**	A	mistake	in	1808.00939. It	will	be	corrected.

(𝛾/= 𝑈𝛾/𝑈B�,𝜓 → 𝑈𝜓) (𝛾/= 𝛾/,𝜓 → Λ�/8𝜓)
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This	is	what	our	group	theoretic	approach	is	based	on

Previously	mysterious	group	
that	we	were	looking	for	is	𝑆𝑈(2)�×𝑈(1)

We	will	drop	subscript	 from	now	on
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We	will	consider	first	fermion	production	
in	`Inertial Frame’

ℋ = 𝜓+ 	−𝑖	𝛾U𝜕U + 𝑚^ − 𝑖	𝑚_𝛾K 𝜓 +	
1
2𝑎8 ΠS

8 + 𝑎%𝑉(𝜙)

ℒ = 𝜓+ 	 𝑖	𝛾/𝜕/ −𝑚𝑎 cos
2𝜙
𝑓 + 𝑖	𝑚𝑎 sin

2𝜙
𝑓 𝜓 +

1
2𝑎

8𝜂/G𝜕/𝜙𝜕G𝜙 − 𝑎%𝑉(𝜙)
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w/ 𝐪 = 𝑟𝑘	𝑥�� +𝑚_	𝑥�8 + 𝑚^	𝑥�C

Group	Theoretic	Approach

𝜕ª𝜉f 	= 		 −𝑖 𝐪 ⋅ 𝜎 𝜉f

Gives	rise	to	EOM	of	 fundamental	 rep.

SU(2)	embedding	 of	
SO(3)	vector	𝐪

𝑖	𝛾/𝜕/ − 𝑚^ + 𝑖	𝑚_𝛾K 𝜓 = 0

𝑖	𝜎C𝜕ª − 𝑖𝑟𝑘𝜎8 −𝑚^𝐼8 + 𝑖𝑚_𝜎� ⊗ 𝐼8 (𝜉f ⊗ 𝜒f) = 0

Dirac	equation	in	inertial	frame

EOM	in	tensor	form	for	a	Fourier	mode	can	be	written	as	(using	 𝜎 ⋅ 𝐤 𝜒f = 𝑟𝑘𝜒f)

SU(2)	fundamental

:	it	is	called	Weyl	 equation	in	condensed	matter	physics
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w/ 𝐪 = 𝑟𝑘	𝑥�� +𝑚_	𝑥�8 + 𝑚^	𝑥�C

𝜉f ≡
𝑢f
𝑟𝑣f

𝜕ª𝜉f 	= 		 −𝑖 𝐪 ⋅ 𝜎 𝜉f

Fundamental	 rep.	of	SU(2)

EOM	of	fundamental	 rep.

SU(2)	embedding	 of	
SO(3)	vector

Group	Theoretic	Approach
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𝜁f = 𝜉R𝜎	𝜉 :			vector

w/ 𝐪 = 𝑟𝑘	𝑥�� +𝑚_	𝑥�8 + 𝑚^	𝑥�C

𝜉f ≡
𝑢f
𝑟𝑣f

1
2 𝜕ª𝜁f 	= 𝐪×𝜁f

𝜕ª𝜉f 	= 		 −𝑖 𝐪 ⋅ 𝜎 𝜉f

Fundamental	 rep.	of	SU(2)

EOM	of	fundamental	 rep.

SU(2)	embedding	 of	
SO(3)	vector

In	terms	of	SO(3)	∼ SU(2)	reps

𝜕ª𝜁f	U =
1
2 𝜉f

R 𝑖𝐪 ⋅ 𝜎,	𝜎U 𝜉f = 2𝜖U�z𝑞�𝜁f	z	

Bilinear	of	𝜉f :					𝜉fR𝐴	𝜉f

𝜉R	𝜉	(= 1) :			scalar

w/	𝐴 =	arbitrary	2×2
complex	matrix

EOM	of	vectorial rep.

the only non-trivial rep.

Group	Theoretic	Approach
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w/ 𝐪 = 𝑟𝑘	𝑥�� +𝑚_	𝑥�8 + 𝑚^	𝑥�C

Analog	to	classical	precession	motion

1
2
𝑑𝜁f
𝑑𝑡 	= 		𝐪×𝜁f

Classical	precession	of	a	vector	𝑟
with	angular	velocity	𝜔

𝜔
𝑟

𝑑𝑟
𝑑𝑡 = 𝜔×𝑟

torque

Quantum	mechanical	fermion	
production

𝑟 = 𝐌 (magnetization), 𝜔 = 𝜔𝐌 = −𝛾𝐁

:	called	block	eq.

𝐸 = 𝜔𝐌 ⋅ 𝐌

𝑑𝐌
𝑑𝑡 = 𝜔𝐌×𝐌

when

? = 𝒒 ⋅ 𝜁f
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Particle	number	density

ℋP = d #𝑑𝑘C

fh±

𝑎fR 𝐤 ,𝑏f −𝐤
𝐴f 𝐵f∗
𝐵f −𝐴f

𝑎f(𝐤)
𝑏fR(−𝐤)

𝐴f =
1
2 −

𝑚^

4𝜔 𝑢f 8 − 𝑣f 8 −
𝑘
2𝜔 𝑅𝑒 𝑢f

∗𝑣f −
𝑟𝑚_

2𝜔 𝐼𝑚(𝑢f∗𝑣f)

𝐵f =
𝑟	𝑒Uf��
2 2	𝑚^𝑢f𝑣f − 𝑘 𝑢f8− 𝑣f8 − 𝑖𝑟𝑚_(𝑢f8+ 𝑣f8)

Now	it	is	clear	that	each	matrix	element	should	 be	a	function	of	𝐪 and	𝜁f
in	our	group	 theoretic	approach
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Particle	number	density

ℋP = d #𝑑𝑘C

fh±

𝑎fR 𝐤 ,𝑏f −𝐤
𝐴f 𝐵f∗
𝐵f −𝐴f

𝑎f(𝐤)
𝑏fR(−𝐤)

𝐴f =
1
2 −

𝑚^

4𝜔 𝑢f 8 − 𝑣f 8 −
𝑘
2𝜔 𝑅𝑒 𝑢f

∗𝑣f −
𝑟𝑚_

2𝜔 𝐼𝑚(𝑢f∗𝑣f)

𝐵f =
𝑟	𝑒Uf��
2 2	𝑚^𝑢f𝑣f − 𝑘 𝑢f8− 𝑣f8 − 𝑖𝑟𝑚_(𝑢f8+ 𝑣f8)

𝐴f = 𝐪 ⋅ 𝜁f 𝐵f 8 = 𝐪×𝜁f
8

= 𝜔 cos 𝜃

Now	it	is	clear	that	each	matrix	element	should	 be	a	function	of	𝐪 and	𝜁f
in	our	group	 theoretic	approach

𝐵f = 𝐪×𝜁f = 𝜔 sin𝜃

Diagonal	element Off-diagonal	element

One	can	easily	see	why	
eigenvalues	are	±𝜔 = ±|𝐪|
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Particle	number	density

ℋP = d #𝑑𝑘C

fh±

𝑎fR 𝐤 ,𝑏f −𝐤
𝐴f 𝐵f∗
𝐵f −𝐴f

𝑎f(𝐤)
𝑏fR(−𝐤)

𝑎f(𝐤)
𝑏fR(−𝐤)

→ 𝛼f∗ 𝛽f∗
−𝛽f 𝛼f

𝑎f(𝐤)
𝑏fR(−𝐤)

At	time	𝑡,	off-diagonal	element	becomes	non-zero.	
Diagonalization	is	done	via

𝑛f,z = 0 𝑎R(𝐤)𝑎(𝐤) 0 = 𝛽f 8= 𝑓(𝐪 ⋅ 𝜁f, |𝐪|)

𝐴f = 𝐪 ⋅ 𝜁f , 𝐵f = 𝐪×𝜁f
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Particle	number	density

ℋP = d #𝑑𝑘C

fh±

𝑎fR 𝐤 ,𝑏f −𝐤
𝐴f 𝐵f∗
𝐵f −𝐴f

𝑎f(𝐤)
𝑏fR(−𝐤)

𝑎f(𝐤)
𝑏fR(−𝐤)

→ 𝛼f∗ 𝛽f∗
−𝛽f 𝛼f

𝑎f(𝐤)
𝑏fR(−𝐤)

At	time	𝑡,	off-diagonal	element	becomes	non-zero.	
Diagonalization	is	done	via

𝑛f,z = 0 𝑎R(𝐤)𝑎(𝐤) 0 = 𝛽f 8= 𝑓(𝐪 ⋅ 𝜁f, |𝐪|)

𝑛f,z = 𝐴± 𝐵
𝐪 ⋅ 𝜁f
|𝐪|

𝐴f = 𝐪 ⋅ 𝜁f , 𝐵f = 𝐪×𝜁f

It	should	be	at	most	linear	in	𝜁f

𝐴 − 𝐵 ≤ 𝑛f,z ≤ 𝐴 +𝐵

which	gives	rise	to	 inequality, 𝑛f,z =
1
2 1 −

𝐪 ⋅ 𝜁f
|𝐪|

Using	Pauli-blocking	property:

0 ≤ 𝑛f,z ≤ 1

′ − ′ sign	chosen	 for	the	
consistency	with	the	form	of	𝐴f

(**	agrees	with	our	explicit	computation)



31

w/ 𝐪 = 𝑟𝑘	𝑥�� +𝑚_	𝑥�8 + 𝑚^	𝑥�C

Solution	of	EOM

Given	the	particle	number	density,	 closed	form	of	solution	 is	available

1
2 𝜕ª𝜁f 	= 𝐪×𝜁f = 𝐪 ⋅ 𝐋 𝜁f 𝑛f,z =

1
2 1 −

𝐪 ⋅ 𝜁f
|𝐪|

Initial	condition	 (↔ zero	particle	number)	 at	𝑡 = 𝑡L is	straightforward	unlike	other	
approach

𝜁f(𝑡L, 𝑡L) =
𝐪L
|𝐪L|

𝜁f 𝑡, 𝑡L = 𝑇 exp # 𝑑𝑡¹	(𝐪 ⋅ 𝐋)(𝑡′)
ª

ªº

𝐪L
|𝐪L|

Just	like	solving	Schrödinger	 eq.	for	the	unitary	op.,	EOM	can	be	iteratively	
solved	to	be	

Expanding	involves	commutator	of	series	of	𝐪 ⋅ 𝐋
WKB	solution	might	be	the	case	with	vanishing	commutators
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Switching	to	̀ Rotating Frame’

ℒ = 𝜓+ 	 𝑖	𝛾/𝜕/ − 𝑚𝑎 −
1
𝑓 𝛾

L𝛾K�̇� 𝜓+
1
2𝑎

8𝜂/G𝜕/𝜙𝜕G𝜙 − 𝑎%𝑉(𝜙)

Via	𝜓 → 𝑒RUVWS/X𝜓

𝜁f → 𝑅 𝑡 𝜁f	, 𝑅 𝑡 =
1 0 0
0 cos 2𝜙 𝑓⁄ −sin2𝜙 𝑓⁄
0 sin 2𝜙 𝑓⁄ cos 2𝜙 𝑓⁄

This	rotating	frame	is
non-inertial	frame

Equivalent	to	(in	terms	of	𝜁f)

Needs	to	supplement	extra	terms,	e.g.	Coriolis	,	centrifugal	forces	
etc,	to	keep	physics	independent	
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Under	𝜁f → 𝑅 𝑡 𝜁f	, 𝑅 𝑡 =
1 0 0
0 cos 2𝜙 𝑓⁄ −sin2𝜙 𝑓⁄
0 sin 2𝜙 𝑓⁄ cos 2𝜙 𝑓⁄

1
2 𝜕ª𝜁f 	 = 𝐪×𝜁f = 𝐪 ⋅ 𝐋 𝜁f → 			

1
2 𝜕ª(𝑅𝜁f) 	= 𝐪 ⋅ 𝐋 (𝑅𝜁f)

1
2 𝜕ª𝜁f 	 = 𝑅p 𝐪 ⋅ 𝐋 𝑅	𝜁f − 	

1
2𝑅

p�̇�𝜁f

w/ 𝑅p�̇� U� ≡ 𝜖U�z𝜔½¾	z

Similarly	to	the	classical	mechanics,	EOM	transforms	like

EOM	in	`Rotating	Frame’

EOM	can	be	brought	 back	to	the	universal	form
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Under	𝜁f → 𝑅 𝑡 𝜁f	, 𝑅 𝑡 =
1 0 0
0 cos 2𝜙 𝑓⁄ −sin2𝜙 𝑓⁄
0 sin 2𝜙 𝑓⁄ cos 2𝜙 𝑓⁄

1
2 𝜕ª𝜁f 	 = 𝐪×𝜁f = 𝐪 ⋅ 𝐋 𝜁f → 			

1
2 𝜕ª(𝑅𝜁f) 	= 𝐪 ⋅ 𝐋 (𝑅𝜁f)

1
2 𝜕ª𝜁f 	= 𝑅𝐪×𝜁f +	

1
2𝜔½¾×𝜁f = 𝑅𝐪 + 𝜔½¾ ×𝜁f = 𝐪′×𝜁f

1
2 𝜕ª𝜁f 	 = 𝑅p 𝐪 ⋅ 𝐋 𝑅	𝜁f − 	

1
2𝑅

p�̇�𝜁f

w/ 𝑅p�̇� U� ≡ 𝜖U�z𝜔½¾	z

Similarly	to	the	classical	mechanics,	EOM	transforms	like

𝐪¹ = 𝑟𝑘 +
�̇�
𝑓 𝑥�� +𝑚𝑎	𝑥�C

:	different	basis	amounts	to	choose	different	angular	velocity

EOM	in	`Rotating	Frame’

EOM	can	be	brought	 back	to	the	universal	form
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Particle	number	density	 in	̀ Rotating	(non-inertial)	Frame’

Particle	number	density	 in	rotating	frame	

𝑛f,z = 0 𝑎R(𝐤)𝑎(𝐤) 0 = 𝛽f 8= 𝑓(𝐪¹ ⋅ 𝜁f, |𝐪′|)

It	should	be	at	most	linear	in	𝜁f.	
Higher	order	terms	should	vanish	to	match	to	the	one	in	inertial	frame	in	�̇� → 0 limit

𝑛f,z =
1
2 1 −

𝐪′ ⋅ 𝜁f
|𝐪′|

ℋP = 𝜓+ 	−𝑖	𝛾U𝜕U + 𝑚𝑎 +	
1
𝑓
𝛾L𝛾K�̇� 𝜓 −

1
2𝑎8

𝜓+𝛾L𝛾K𝜓 8

𝑓8

This	particle	number	density	matches	to	
the	quadratic	terms	in	

1. It	looks	 like	particle	numbers	are	different	in	two	different	frames.	
2. Establishing	the	‘final’	particle	number	as	a	basis-independent	quantity	seems	

very	non-trivial,	e.g.	Inertial	frame	vs.	Non-inertial	frame

See	Adshead,	Sfakianakis 15’	for	
a	related	discussion
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Summary

We	proposed	a	new	group	theoretic	approach	to	theory	of	
fermion	production	

2.	This	approach	applies	to	any	fermion	system

1.	This	approach	is	based	on	the	reparametrization group	of	gramma	matrcies

Possible	extension	is	gravitino production,	fermion	production	from	
gravitational	background,	fermion	production	in	extra-dim.	spacetime

3.	Needs	an	idea	to	simplify	 the	solution	 for	analytic	understanding

It	would	be	great	if	this	approach	can	simplify	some	
complicated	computation	or	give	a	new	insight
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Extra	Slides
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Back	reaction

�̈� + 2	
�̇�
𝑎 �̇� + 𝑎8𝑉 𝜙 =

2
𝑎8𝑓 〈𝜓

+ 𝑚_ + 𝑖𝑚^𝛾K 𝜓〉

= −d #
𝑑C𝑘
2𝜋 C 〈𝑚_𝜁f	C + 𝑚^𝜁f	8〉

fh±

In	the	massless	limit,	𝑚 → 0

𝐪 = 𝑟𝑘	𝑥��

𝜕ª𝜁f = 2	𝐪×𝜁f = 0

Initally	,	𝜁f should	be	parallel	to	𝐪,	stay	in	𝑥��-axis

Since	𝐪 is	constant,	𝜁f does	not	evolve.		𝜁f	8 = 𝜁f	C = 0 for	any	time	
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=
1
2
−
𝑚^
4𝜔

𝑢f 8 − 𝑣f 8 −
𝑘
2𝜔

𝑅𝑒 𝑢f∗𝑣f −
𝑟𝑚_
2𝜔

𝐼𝑚(𝑢f∗𝑣f)

𝑛f,z = 𝛽f 8 = 0 𝑎(𝐤)𝑎(𝐤) 0 =	 0 𝑏(𝐤)𝑏(𝐤) 0

Solve	equations	of	motion	for	𝑢f,𝑣f

𝑢f =
1
2
𝑒U	f	S/X	�̃�f + 𝑒BU	f	S/X𝑑Âf

𝑣f =
1
2
𝑒U	f	S/X	�̃�f − 𝑒BU	f	S/X𝑑Âf

𝑖𝛾/𝜕/ − 𝑚 −
1
𝑓
𝛾L𝛾K�̇� 𝜓 = 0

𝑈Ãf =	
𝑢Äf 𝐤,𝑡 	𝜒f(𝐤)
𝑟	𝑣Äf 𝐤,𝑡 𝜒f(𝐤)

𝑖𝛾/𝜕/ −𝑚^ + 𝑖𝑚_𝛾K 𝜓 = 0

𝜓 ∼ 𝑈Ãf 𝐤,𝑡 𝑎f 𝐤 + 𝑉Åf −𝐤,𝑡 𝑏fR(−𝐤) 𝜓 ∼ 𝑈Ãf 𝐤,𝑡 𝑎f 𝐤 + 𝑉Åf −𝐤,𝑡 𝑏fR(−𝐤)

𝑈f =	
𝑢f 𝐤,𝑡 	𝜒f(𝐤)
𝑟	𝑣f 𝐤,𝑡 𝜒f(𝐤)

�̃�f =
𝑢Äf + 𝑣Äf

2
	, 𝑑Âf =

𝑢Äf − 𝑣Äf
2

𝑠f =
𝑢f + 𝑣f

2
	, 𝑑f =

𝑢f − 𝑣f
2
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𝜕ª8𝑠f + 	 −
1
4
+
1
𝑥
1
2
+ 𝑖	2𝜉𝑟 +

1
𝑥8

1
4
+ 𝜇8 + 4𝜉8 	𝑠f = 0

𝑖𝛾/𝜕/ − 𝑚 −
1
𝑓
𝛾L𝛾K�̇� 𝜓 = 0

𝜓 = #
𝑑C𝑘
2𝜋 C/8 𝑒

U𝐤⋅𝐱 d 𝑈Ãf 𝐤, 𝑡 𝑎f 𝐤 +𝑉Åf −𝐤,𝑡 𝑏fR(−𝐤)
fh±

𝑈Ãf =	
𝑢Äf 𝐤,𝑡 	𝜒f(𝐤)
𝑟	𝑣Äf 𝐤,𝑡 𝜒f(𝐤)In	an	inflationary	era

𝜕ª8𝑑f + 	 −
1
4
+
1
𝑥
−
1
2
+ 𝑖	2𝜉𝑟 +

1
𝑥8

1
4
+ 𝜇8 + 4𝜉8 	𝑠f = 0

𝑑8𝑤
𝑑𝑧8

+ 	 −
1
4
+
𝜅
𝑧
+
1
4Ê − 𝜇8

𝑧8
	𝑤 = 0

Whittaker	Equation

𝑚𝑎
𝑘
= −

𝑚
𝐻𝜏𝑘

=
𝜇
𝑥
	 ,

𝑎�̇�
𝑓𝑘

=
2𝜉
𝑥

�̇� ∼ const. �̃�f,𝑑Âf =
𝑠f, 𝑑f
𝑥

and

Adshead,	Sfakianakis 15’

In	inflationary	era,	EOM	in	the	original	basis	has	an	analytic	solution
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𝜕ª8�̃�f+ 	 𝑚8 + 𝑘 + 𝑟	
�̇�
𝑓

8

+ 𝑖	𝜕ª𝑘Å 	 �̃�f = 0

The	formula	 in	a	static	Universe	has	a	close	similarity	to	the	case	with	Yukawa-
type	interaction

𝑖𝛾/𝜕/ − 𝑚 −
1
𝑓
𝛾L𝛾K�̇� 𝜓 = 0

𝜓 = #
𝑑C𝑘
2𝜋 C/8 𝑒

U𝐤⋅𝐱 d 𝑈Ãf 𝐤, 𝑡 𝑎f 𝐤 +𝑉Åf −𝐤,𝑡 𝑏fR(−𝐤)
fh±

𝑈Ãf =	
𝑢Äf 𝐤,𝑡 	𝜒f(𝐤)
𝑟	𝑣Äf 𝐤,𝑡 𝜒f(𝐤)

𝑛f,z =
1
2
−

𝑘Å
4𝜔Ì

�̃�f 8 − 𝑑Âf
8 −

𝑚
2𝜔Ì

𝐼𝑚(�̃�f∗𝑑Âf)

=
1

4𝜔Ì(𝑘Å + 𝜔Ì)
𝑑Â̇f

8
+𝜔Ì8 𝑑Âf

8 − 2𝜔Ì	𝐼𝑚(𝑑Âf𝑑Â̇f∗)

𝜕ª8𝑑Âf + 	 𝑚8 + 𝑘 + 𝑟	
�̇�
𝑓

8

− 𝑖	𝜕ª𝑘Å 	𝑑Âf = 0

In	a	static	Universe
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