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OPPP crossing angle study

◦ Crossing angle between strong laser and
oncoming electron beam (head on
corresponds to π)

◦ Analytic study assumes perfect beam
overlap and constant laser intensity

◦ HICS rate produces half energy radiated
photons at π/2

◦ Pair production rate is best for head on
collision, 0.5π sees rate fall off by several
orders of magnitude (unworkable at LUXE)

HICS rate vs radiated photon energy
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Foil bremsstrahlung/OPPP rate vs xi
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Exact solutions for realistic laser pulses

circularly polarised plane wave

APW
µ = a1µ cos k·x+ a2µ sin k·x

Gaussian pulse, τ

Aτµ = e−k·x/τ
2
APW
µ , τ is pulse length

Twisted photons

ATW
µ =

∫
dk⊥

(2π)2
εkΛµ aκm e−ik·x, aκm=

√
2π(-i)m

√
κ

eimφk δ[κ−|k⊥|]

m = helicity mode, κ = conical momentum spread

Electromagnetic fields at a strongly focussed laser pulse are
highly non trivial

New dirac equation solutions required!
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Bound Dirac equation solutions in any intense
electromagnetic field

Bound Dirac Lagrangian
for electrons in external
fields

Volkov solution (one
plane wave external field)
ensures local gauge
invariance

There is a whole family of
locally gauge invariant
solutions

Rotational symmetry
allows solutions in two
external fields propagating
in any direction

New solutions now
available, Calculate new
transition probabilities and
study!

Bound Dirac Lagrangian

Simple transition probabilities
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