OPPP crossing angle study

- Crossing angle between strong laser and oncoming electron beam (head on corresponds to π)
- Analytic study assumes perfect beam overlap and constant laser intensity
- HICS rate produces half energy radiated photons at $\pi/2$
- Pair production rate is best for head on collision. 0.5π sees rate fall off by several orders of magnitude (unworkable at LUXE)

2 step Trident rate vs intermediate photon energy

Foil bremsstrahlung/OPPP rate vs xi

Exact solutions for realistic laser pulses

circularly polarised plane wave

$$A_{\mu}^{\mathsf{PW}} = a_{1\mu} \cos k \cdot x + a_{2\mu} \sin k \cdot x$$

Gaussian pulse, τ

$$A^{\tau}_{\mu} = e^{-k \cdot x/\tau^2} A^{\rm PW}_{\mu}, \quad \tau \text{ is pulse length}$$

Twisted photons

$$\begin{split} A_{\mu}^{\text{TW}} = & \int \! \frac{\mathrm{d} \mathbf{k}_{\perp}}{(2\pi)^2} \epsilon_{k\Lambda\mu} \, a_{\kappa m} \, e^{-ik \cdot x}, \quad a_{\kappa m} \!\! = \!\! \frac{\sqrt{2\pi} (\!\! - \!\! i)^m}{\sqrt{\kappa}} e^{im\phi_{\mathbf{k}}} \, \delta[\kappa - \!\! \mid \!\! k_{\perp} \!\! \mid] \\ m = & \text{helicity mode}, \quad \kappa = \text{conical momentum spread} \end{split}$$

Electromagnetic fields at a strongly focussed laser pulse are highly non trivial

New dirac equation solutions required!

Bound Dirac equation solutions in any intense electromagnetic field

- Bound Dirac Lagrangian for electrons in external fields
- Volkov solution (one plane wave external field) ensures local gauge invariance
- There is a whole family of locally gauge invariant solutions
- Rotational symmetry allows solutions in two external fields propagating in any direction
- New solutions now available, Calculate new transition probabilities and study!

